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The ARCH model shares with the related literature on risk and return one common thing: 
rational- expectation paradigm. In particular, market prices should reflect investors’ rational 
forecasts based on the best available information. When new information arrives, the 
market’s expectations change. Therefore, prices fluctuate. Thus, price volatility is due to 
information arrivals and hence, volatility can be forecast, based on the up-to-date 
information. However, when the available information is too complex, rational expectation 
may no longer hold. Bounded rationality should be added into our frame work to study risk 
and return, so that, we can gain a better understanding of market volatility. 
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1. Introduction 

Market volatility is a time-varying phenomenon. And the challenge for econometricians 

is how to forecast the mean and variance of asset returns in this context. The ARCH 

model was introduced by Engle (1982) to meet such a challenge.  

  The key feature of the ARCH model is the conditional variance, which depends 

on past forecast errors. This concept implies a strong relationship between volatility and 

return - an idea that in fact, is not new. It can be dated back to the works by Markowitz 

(1952) and Tobin (1958), who associated risk with the variance in the value of a portfolio 

and the implications by Sharpe (1964) for the case, where investors are concerned with 

the risk associated with their portfolio as a whole. This theory is called Capital Asset 

Pricing Model (CAPM) that views the excess return of an asset as a kind of compensation 

for amplified variance of the returns to the portfolio, when an individual purchases this 

asset. Later, Black and Scholes (1972) and Merton (1973) developed a model to evaluate 

the pricing of options. This model is also consistent with CAPM. In particular, options 

can be viewed as insurance, whose price depends upon the risks, being measured by the 

variance of asset returns (Engle, 2004). 

Thus, the conditional variance equation of the ARCH model has a very strong 

base, theoretically. Empirically however, there exist several findings that are inconsistent 

with some important implications drawn from the model.   

First, the key feature of the ARCH model is conditional variance such that, high 

volatility should correspond to high expected returns. If such a relation were linear, the 



3 

 

mean of the return equation would depend upon the past squared returns, exactly in the 

same way that the conditional variance depends on past squared returns (Engle, 2004)
2
.  

This conjecture has been undergone serious tests and empirical evidence on this 

measurement has been mixed. For instance, Engle (2004) wrote: “While Engle et al. 

(1987) find a positive and significant effect, Chou, Engle and Kane (1992), and Glosten, 

Jagannathan and Runkle (1993), find a relationship that varies over time and may be 

negative because of omitted variables”. As Engle himself said, such an inconsistency is a 

challenge to better modeling of the risk return trade-off. 

Second, another important implication of the ARCH model is found in 

determining the value at risk, often abbreviated as VaR. The ARCH/GARCH model can 

estimate one-day 99% VaR by using the 99% asymptotic confidence interval for the one-

step-ahead forecast errors. Obviously, the accurate estimate of standard deviation for the 

following day is crucial. And this is precisely what is claimed as one of the advantages of 

the ARCH model over the simple least squares model. 

An empirical test for this claim can be found in Bollerslev (1986), although he 

studied inflation rather than VaR. In the paper, plots of the actual inflation rate and 

asymptotic confidence intervals for the one-step-ahead forecast errors are given for the 

predictions of the model estimated by the least squares and the GARCH (1,1)  model. 

                                                            

2
 The GARCH conditional variance is: 

22

11110

2 ...... qtqtqtqtt −−−− ++++++= σβσβεαεαασ  . The linear 

relation means:  ,,22 tu ttt ∀+= εσ   where ).,0(~ 2

ut  u σ Insert the latter into the former, take the expectation, 

and collect terms, we have: ....)( 22

110

2

qtqttE −− +++= εαεααε  Here,  ,1−−= ttt ppε  is forecast error and 

tp   is asset price. For the return )/ln( 1−= ttt ppr , we just replace tε and tp  
by tr  

and  )ln( tp , respectively.   
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According to Greene (1993, Ch. 19), “In periods of very volatile inflation (the late 1940s 

and early to mid-1950s), the simple least squares regression is a visibly better predictor. 

The effect is reversed in the more stable period of the late 1950s to early 1970s.” 

Greene’s comment raises the question whether the least squares could outperform the 

ARCH model, at least in highly volatile periods. 

Third, the ARCH model might over-estimate the unconditional variance of returns 

which could lead to poor volatility forecast. How such a possibility could happen?   

The ARCH model shares with the CAPM and all related literature reviewed above 

one common thing: rational-expectation paradigm. Given the relevant information is 

fragmentally distributed among investors; the distribution of forecast errors should have 

fat tails in periods of price discovery. However, these periods should be time limited, if 

investors are rational, so that the forecast is certain to eventually revert to less extreme 

volatilities (Engle (2004). This is precisely where the volatility clustering phenomenon 

has found its base in rational-expectation paradigm, so the ARCH model goes.  

More specifically, provided that most investors are sophisticated, i.e. they are able 

to learn and process the relevant information and act optimally upon it, forecast errors 

can never be too far out of line for a too long period. In other words, forecast errors 

should be clustered in time. Furthermore, although future returns are extremely 

unpredictable, investors' expectations are assumed not to be systematically biased and 

they use all relevant information in forming their forecasts.  Therefore, forecast errors 

should be symmetrically distributed around the mean with fat tails. These features of 

forecast errors - volatility clustering and fat tails - are precisely the characteristics for 

which an ARCH model is designed (Engle, 2004). Thus, the ARCH conditional variance 
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equation is consistent with rational expectation. So long as rational expectation 

assumption holds, the ARCH model will give an accurate measurement of volatility.  

Suppose, however, the information set is too complex, beyond the limits of 

rational investors in formulating and solving problems and in processing information. 

Under such a bounded rationality, investors may employ the use of heuristics to make 

decisions rather than rational forecasts (Simon, 1957, Williamson, 1981). They do this 

because of the complexity of the situation, and their inability to process and compute the 

expected return of every alternative option (Simon, 1991).  

Put differently, the more complex the situation, the smaller the fraction of 

sophisticated, well-informed investors, who are able to form rational forecasts; and the 

greater the fraction of uninformed investors, who tend to act irrationally. Therefore, the 

market’s expectations, which are a kind of weighted average of the expectations of all 

investors, should be inclined toward heuristic beliefs of uninformed ones. Thus, the 

weighted average may not reflect the best available information and more volatile than 

what is justified by changes in fundamentals (Milgrom and Robert, 1992, p. 469).  

More importantly, volatility now can asymmetrically respond to past forecast 

errors. Large forecast errors seem to feed market emotions, so the forecast errors that 

move in the same direction tend to appear at a much higher frequency than the ones that 

move in the reverse direction (see Figure 1).  

Volatility asymmetry phenomenon may be the essential that causes the ARCH 

model to overestimate volatility in periods of economic turmoil. If the problem of 

volatility asymmetry can last, the distribution of forecast errors will have too fat tails, 

while forecast errors tend to fall in only one side of the confidence interval at a high 
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frequency. By using the same chain of reasoning, we can explain why the simple least 

squares model can outperform the ARCH model in highly volatile periods. The bottom 

line is that, in these periods, rational expectation hypothesis no longer hold. 

The above suggests that when adding the bounded rationality hypothesis into our 

framework to study risk and return, we can gain a better understanding about market 

volatility
3
. This is the paper’s main purpose.  

In what remains, the paper is organized as follows: Sections 2 introduces our 

approach to understand volatility asymmetry under bounded rationality. Section 3 

presents the forces under which, volatility asymmetry is reduced, and the market’s 

expectations are adjusted to reflect available information, if time is left to unfold. 

Sections 4 and 5 present a price adjustment model. Section 6 concludes the paper.   

2. Volatility Asymmetry  

       As already said, in highly volatile periods, the least squares can outperform the 

ARCH model, according to Greene. This could only be plausible if rational expectation 

no longer holds. Let us now investigate this matter in detail.     

To begin with, let us rethink the conditional variance and its implications for the 

distribution of forecast errors.  

Without loss, let us consider the simplest form of ARCH (1): 

),0(~|, 2

1 ttttt  y σεεε −=
    (1)

 

                                                            
3 The ARCH family has become so large. For example, Engle and Rangel (2008) proposed the Spline-GARCH 

model to investigate macroeconomic causes of low frequency volatility; Chou (2005) developed the CARR (p, q) 

model to study the dynamic dependencies in time series of high-low asset prices. Nevertheless, the ARCH family’s 

members still share the same underlying feature: rational expectation paradigm. 



7 

 

where, 1−−= ttt ppy
 
, is the change in security price tp ; time series ty  is assumed to be 

stationary; furthermore, the conditional variance has the following specification:  

               
2

1101

2 )|( −− +== tttt Var εααεεσ                                  (2) 

Therefore, the unconditional variance is:  

)())|(()( 1101 −− +== tttt VarVarEVar εααεεε
 

Bollerslev presented the conditions needed to ensure the stability of higher 

moments of the normal distribution. Thus, the maximum-likelihood estimate of the 

conditional variance asymptotically converges to the unconditional one:  

                   

constVar t

a

t =
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=≈
1

0
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1
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α
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εσ

   

(3)  

 where,  

2^

tσ  is the estimate of the conditional variance in the model (1) - (2). 

The correspondence of an ARCH (1) model in the least-squares is an AR (1), such 

that, the error term is defined as follows:  ,.1 ttt u+= −ρεε  where ),0(~ 2

u

iid

t  u σ .  Thus, 

the unconditional variance is: 

constVar u

t =
−
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2

2

1
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ρ

σ
ε

    (3’)

  

     

 

Comparing the two unconditional variances in (3) and (3’), we can see a similarity 

in the structure, but there are some differences in estimate of parameters, which reveal 
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some insight about how an ARCH (1) differs from an AR (1) in estimate of standard 

deviation.  

For an ARCH (1), in the short run, the conditional variance equation is estimated, 

using the up-to-date information. In the long run, the estimate of conditional variance 

asymptotically converges to the unconditional one, and hence, it reflects more accurately 

changes in fundamentals, when temporal shocks taper off. Thus, an ARCH can provide 

an accurate forecast of standard deviation for everyday or every period, despite time-

varying variance of returns. For least squares, the problem is that volatility is estimated 

by the sample standard deviation of forecast errors. So the trouble is what is the right 

period to use? If it is too long, then it will not be so relevant for today and if it is too 

short, it will be very noisy (Engle, 2004).  

Now, let us turn to the case when the information set is too complex so that, most 

investors face their limits in processing information. In this context, price discovery 

period may be too long and too volatile.   

More importantly, under bounded rationality, false beliefs can feed market 

emotions in a self-fulfilling manner, so volatility now can asymmetrically respond to past 

forecast errors, as already mentioned. Therefore, there exist too many successive moves 

in the same direction, observed by Cootner (1964) and Lo and MacKinlay (1999)
4
.  

Remind that, the random error tε  is normally distributed. Many successive 

moves of forecast errors in the same direction can be possible, only if the self-fulfilling 

                                                            
4
 It is clear that our concept of asymmetrically volatility response to past forecast errors differs from the one implied 

by the Exponential GARCH or EGARCH model of Dan Nelson. 
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prophecy has caused successive shifts in securities’ value far and further from their 

intrinsic worth.  

The above paragraph suggests some idea about how to measure volatility under 

bounded rationality. To pave a way toward this end, let us compare again the asymptotic 

confidence intervals estimated by the least squares and the ARCH model in the context of 

volatility asymmetry. 

By construction, the ARCH model (1)-(2) should provide the distribution of 

forecast errors, which is concentrated at zero with fat tails. This implies the asymptotic 

confidence interval can be very large, should the period under study be very volatile. 

Furthermore, suppose the economy experiences volatility asymmetry problem, as in a 

bubble period. Such a large confidence interval can even hardly capture tomorrow’s 

forecast error 1+tε , since it tends to move far and further to reach a right extreme value.  

Instead, for the least squares, the best predictor for tomorrow price 1

^

+tp  is today price

tp , such that: ttt pppE =+ )|(
^

1 . Thus, the least squares forecast can overcome the 

volatility asymmetry problem by shifting the mean )|(
^

1 tt ppE + accordingly. Further, the 

estimate of the standard deviation is unbiased and consistent. Therefore, once shifting the 

mean in according to the market’s expectations, the least squares’ asymptotic confidence 

interval can still capture tomorrow’s forecast error, especially when the direction of price 

moves is not reversed. Such a conjecture is consistent with Greene’s comment. That is, 

the least squares can outperform the ARCH/GARCH model in highly volatile periods.  

But does that make the least squares more useful in financial practice? Obviously, the 

answer is no! The model itself cannot predict a price reversal. Subsequently, the model 
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can cause too many forecast errors, which are unacceptable in financial practice. Thus, a 

natural extension of the least squares model is to upgrade its capacity to predict 

price/trend reversal. To develop such a framework, we must first investigate how asset 

prices fluctuate under bounded rationality. 

3. Market Adjustments 

Investors often purchase or sell stocks because they constantly calculate the trade-off 

between risk and return from holding those assets. For a single stock, if they expect a rise 

in the rate of return higher than enough for compensating the risk, they tend to buy more 

shares of that stock. At new higher prices, the expected return is lower so it is consistent 

with the risk. In contrast, a rise in risk should lead owners to sell some shares. At new 

lower prices, the expected return is driven up to match with the risk increased (Merton, 

1980, and Engle, Lilien and Robins, 1987).  

As already mentioned, if most investors are sophisticated, they can form rational 

expectations, based on the best available information. Thus, prices can never be too far 

out of line for too long, so volatility is time varying, but can be forecast, using up-to-date 

information. 

However, not all investors are sophisticated. If the information is too complex, the 

fraction of investors acting emotionally tends to grow in proportion with the magnitude 

of informational complexity. Under such bounded rationality, the relation between risk 

and expected return can no longer be stable.  

To be specific, suppose an investor sees others repeatedly buy shares of the stock at 

successively higher prices than his estimate of the value. He may suspect that these 

people have better information or forecasts and consequently raise his valuation. But his 
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action is noticed by others, which will further reinforce the belief that the stock may have 

a higher value. Thus, the perception spreads by contagion (Young, 1998). The point is 

that, if this perception is not based on rational forecasts, but on employing heuristics, it 

can be false. Even so, it still causes itself to become true, due to positive feedback 

between belief and behavior (Robert K. Merton, 1968). This tendency is often called the 

herd among uninformed investors.  

Fortunately, not all investors are uninformed or unsophisticated to keep following the 

herd of others.  At successively higher stock prices, informed investors can predict that, 

the expected rate of return has become too low, or the risk of holding shares of this stock 

has become too high. Their rational forecasts should lead them to sell some shares. 

Subsequently, the course now can be reversed, whereby people tend to lower their 

valuation. As before, this process spreads by contagion. Thus, prices should go down and 

approach the security’ true worth. It follows that the risk is reduced and the expected 

return is driven up, just enough to re-establish the correspondence between risk and 

return.   

However, under bounded rationality, this possibility may have only a slim chance. 

Given the information used for making decision is too complex, there may have too few 

knowledgeable, sophisticated investors. More likely, many people tend to act on their 

beliefs rather than on rational forecasts which they are unable to form or understand. 

Thus, it is harder for the course to be reversed toward rational forecasts. 

Even when some very influential, well-informed investors sell off risky assets, the 

others would follow suit and revise their valuation downward. However, because this 

majority of investors are still facing bounded rationality, their downward valuation tends 
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to turn into overreactions, causing prices to drop, more than what is justified by rational 

forecasts. At these so low prices, the expected return is driven up, more than enough to 

compensate for the risk. The uninformed investors then will view this as evidence 

confirming their self- fulfilling beliefs. The weighted average of expectations of all 

investors is hence quickly tipped back to the self-fulfilling beliefs by contagion or by the 

herd (David Scharfstein and Jeremy Stein, 1990). Security prices go up high again.  

Thus, rises in prices now appear at a higher frequency than falls in prices. This is the 

volatility asymmetry we have mentioned, but now it is applied for hyperemotional 

periods. Bubbles and sudden crashes could be the result.  

Fortunately, there are some adjustment mechanisms embodied in the market, which 

can often work out to correct false beliefs and cool down the situation. 

  In the context we are discussing, volatility asymmetry causes the overall level of 

risk in the stock market to keep rising. In response, interest rates, gold prices go up 

sharply, or hard currencies are appreciated. Such market responses can work as a filter 

that gradually wipes out wrong beliefs, reducing volatility. How does such a mechanism 

work?  

    It is clear that self-fulfilling beliefs tend to widen the gap between securities prices 

and their intrinsic value. The larger the gap, the riskier it is to hold these assets. Again 

sophisticated investors will be the first group, who sell off some of those securities and 

place their wealth in a safe haven. As gold prices increase more frequently, others tend to 

sell off their stocks too, as they fear for risk increased. This tendency causes overall 

securities prices decreased or bubbles burst. To survive, firms with weak fundamentals 
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have to rely more on debt than on equity. These firms then suffer from volatile earning 

and large interest expenses. When such news reaches the public, beliefs of investors now 

are inconsistent with facts if their beliefs are wrong. Therefore, false beliefs are wiped out 

one by one, which reinforces the process of learning whereby uninformed investors 

become more informed. Subsequently, market overreactions become less frequent or 

volatilities are reduced to less extreme. 

Thus, volatility is just a mirror of the complexity of the learning process, whereby 

volatility reduces when the number of informed investors increases. In other words, 

volatility clustering is simply cluster of the market’ expectations, which remain a 

weighted average of the expectations of all investors, weighing the expectations of 

informed investors in proportion to the magnitude of their transactions.  

In the short run, such a magnitude is insignificant. Securities prices are very volatile 

because self-fulfilling beliefs feeding market emotions and because of market 

overreactions. In the long run, when this magnitude becomes significant, securities prices 

approach their true worth and therefore, volatilities are reduced.    

4. The Model 

We have shown that, in the short run, there still have some forces that correct false 

perceptions, and in the long run, these forces will become strong enough to wipe them 

out. Thus, the weighted average will eventually converge to the state that reflects better 

rational expectations (that Graham Benjamin (1965) called “weighing mechanism”).  

This rule forms our concept of two-step forecast: First, we build a model to predict 

how the weighted average may evolve in a few steps ahead. Second, based on this short-

term trend forecast, one can go back in time to infer how the mean of returns may shift 
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accordingly in the next period. This two-step forecast can provide an accurate estimate of 

the asymptotic confidence interval, despite volatility clustering and volatility asymmetry.  

To formalize this dynamic process, let us first remind that market price at time t, tp  

follows a random walk process, say: 

),0(~, 2

1 σεε  pp
iid

tttt += −       (6) 
 

          

where, tε  is random shock at time t.  

                 Furthermore, the first order difference series 1−−= ppy tt  is a stationary process: 

 
),0(~; 2σεε  y

iid

ttt =       (6’)
  

     Hence, the best predictor for the today price is yesterday price: .)|( 11

^

−− = ttt pppE
 

We then immediately have the following result: 

π=== −− )())|(()( 11

^^

tttt pEppEEpE
                    (7) 

where π  is the company’s intrinsic worth that no one knows exactly! 

       To understand how the weighted average may evolve in the short term, we need to 

add one more equation. 
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Let us denote ∑
+−=

=
t

mt

t p
m

m
1

1

τ
τ . The first order difference series 1−−= ttt mmz  is 

assumed to be stationary and it follows an ARMA (p, q) process
5
:  

,....... 22112211

'

qtqtttptptttt uuuuzzzxz −−−−−− +++++++++= θθθρρρβ  

),0(~ 2

u

iid

t  u σ
      

(8) 

      Here, vector tx represents some macroeconomic trends, such as technical progress or 

inflation, which are publicly known at time t. The parameters associated with the first p 

lagged terms of dependent variable reflect how slowly or quickly the market processes 

available information. Likewise, the parameters associated with the last q terms reflect 

the noise of new information arrived from the q most recent moments. Thus, equation (8) 

is a natural way to express the weighted average of expectations of all investors.  

     Without loss, let us consider an )1(AR  process: tttt uzxz ++= −1

' ρβ . Given that, the 

least squares predictor tm
^

satisfies the following condition: 

)1/(),|( '

11

^

ρβ −+= −− ttttt xmxmmE
  

(9)    
 

We shall have: ).1/()),|(()( '

1

^^

ρβπ −+== − ttttt xxmmEEmE  Hence, one can denote:  

                                                            

5
 Take a notice that, ∑

+−=

=
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1

1

τ
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t

mtm
νε

τ
τ ≡= ∑
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1
. Therefore, mststst <−∋∀≠ ||:,,0),cov( νν  .  

That is another way to say, ),(~ qpARMAz t . 
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)1/(' ρβππ −+≡ tt x
          (10)

 

where tπ  is the company’s intrinsic worth calculated at time t. 

      The additional term tx
'β reflects how macroeconomic trends may work in favor of the 

firm. However, most economists believe that in the long run, no firm can outperform its 

competitors, when all temporal shocks taper off.  Accepting that, we assume the 

following asymptotic condition:  

∞→→⇒→ twhenx tt ,0' ππβ
  (11)   

       Equations (8) to (10) allow us to predict how the weighted average may evolve in the 

short term. Such a trend prediction should help to infer how price tp  will move in the 

next few days. Condition (11), on the other hand, means that in the long run, the dynamic 

path of the weighted average can help to predict which stock prices are underpriced or 

overpriced. These are our next subjects of study. 

5. Adjustment Process  

It is useful to distinguish between two types of price adjustments in the short term: 

Price reversal is the case, where price series tp  returns to and remains near mean tm  for 

some time t; and trend reversal is when trend tm  
reverses to the opposite direction. 

Now, let us state these concepts formally. 

Definition 1: we shall say that the market has been locked into the stage of price 

reversal, if time series ty  successively returns to a confidence interval, for some t. 
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      Recall that the time series tp  is a random walk process. Thus, time series of price 

change  1−−= ttt ppy  could reach up to five-sigma deviation in some circumstances.  

However, because the series ty  is stationary, it tends to return to a confidence interval, 

when temporal shocks taper off.  

      For definiteness, in what follows, we will consider one-sigma confidence interval 

estimated by regression (6’). 

  Lemma 1: When a market has been locked into the stage of price reversal, prices

tp   tend to return to and remain near the mean tm . 

       Proof:  When the market has been locked into the stage of price reversal, by 

definition, at least for some t, the variable ty  must actually stay inside one-sigma 

confidence interval. In other words, the absolute value of price change, 

^
2

1 |||| LSttt ppy σ<−= −  , where 

^
2

LSσ  is the standard deviation estimated by (6’).  

  Provided that the size of the moving average tm  (already denoted bym ) is small 

enough, we shall have: 

^
2|| LStt pm σ<− , at least for some time t, until a new shock 

arrives and tips tp  out of the one-sigma-deviation from tm  □ 

       One can see that, Lemma 1 provides nothing new from a practical point of view 

(see Figure 1). But it suggests some techniques to predict price reversal and trend 

reversal. In our framework, these techniques are similar. Thus, we focus only on the 

technique used to predict trend reversal. This trend forecast is important to estimate 

volatility under volatility asymmetry. 
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       Definition 2: We shall say trend-turning point is the moment that thereafter, price 

series tp  reverses its tendency, such that, the short-term trend tm  also reverses its 

direction.      

      We now propose our main theme: 

      Proposition 1: In a very general condition, a trend-turning point can accurately 

be forecast in a few steps ahead. 

      Proof: Without loss, assume prices have been dropping for a while, (although 

price reversals may occur from time to time). As already noticed, after a trend-turning 

point has been reached, price must keep rising for some steps. That is the series ty  has to 

jump from left extreme values to cross the mean, and then it reaches the right side of the 

confidence interval (see Figure 1). 

       According to Lemma 1, the moments that condition,

^
2

1 |||| LSttt ppy σ<−= −  , 

must be very brief, even just one. Otherwise, we should be locked in the state of price 

reversal. In other words, right after the trend-turning point, we shall have,

^
2

1 LSttt ppy σ>−= −  , at a high frequency. Remind that, before the turning point, we 

should also have, 

^
2

1 LSttt ppy σ−<−= −  , at a high frequency (due to volatility 

asymmetry). 

       Thus, exactly at the turning point, there is a sudden change in the tendency of 

prices tp  , that marks on the evolving of trend series tm , such that, the latter will also 

exhibit trend reversal , even with some lagged moments in time. It is clear that, the more 
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volatile the period under study, the greater the magnitude of reversal and therefore, the 

sharper the mark.  

         To re-emphasize, the change in price tendency must be durable enough. Otherwise, 

we shall return to the state of price reversal, as already suggested. 

         The important message here is that, if we can predict a trend reversal of series tm  a 

few steps ahead, we can go back in time and infer that the turning point of price tendency 

is sure to eventually happen.  

         The next question is how can we accurately predict trend reversal of time series tm ? 

This question leads us to investigate the least squares estimate of asymptotic standard 

deviation once more.  

         From the regression (6’), we have: 
2)( σ=tyVar . We still assume that series (8) 

follows AR (1) process. Therefore, we have: )]1(/[)( 22 ρσ −= mzVar t . 

        Obviously, the smaller the term m, the easier it is to detect trend reversal of time 

series .tm  
On the other hand, the greater the term m and the smaller the termρ , the more 

accurate the prediction of the trend reversal, since the standard error of the regression (8) 

is smaller
6
 . (See Figure 2, for illustration). 

                                                            

6
 Forecast errors of regression (8) is: tttz zze −=

^

.   and recall,   ].)1/[(
1 222

,

2 me
T

s
t

tzz ρσ −→≈ ∑ The 

greater the term m and the smaller the term ρ  is, the smaller the standard errors of regression (8), and hence, the 

more accurate it is the forecast of the trend -reversing point. The latter is due to the Law of Large Number, applied 

for the sample mean of
2

^
2

, || tttz mme −= . 
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        Now, suppose the trend-reversal has been predicted. By going back in time, one can 

infer that the turning point of price series tp   is certain to happen in the next few days □   

        This trend forecast allows to improve the accuracy of estimate of volatility, since we 

should know the direction to which the mean of returns will be shifted.  

        Next, recall that the smaller the termρ , the faster the market’s capability to process 

information. This implies that a majority of investors have become more informed 

through leaning. This process is reinforced by market filter which has wiped out false 

beliefs, pushing securities prices closer to their true worth.  

        Thus, the smaller is the termρ , the more likely the series ty  will remain within a 

confidence interval for some time. We then return to the state of Efficient Market 

Hypothesis (EMH), such that price tp  changes very little and runs along a short-term 

trend tm  that may be up or down, depending on the market’s expectations. 

        Proposition 2:  When false beliefs are wiped out one by one, market gradually 

converges to the state of EMH, where prices tp  slightly fluctuate around its intrinsic 

value tπ , which is approximately equal to tm . 

        In the state of EMH, by definition, time series price tp  tends to return and stays near 

mean tm  and hence, price reversals should appear at a high frequency. That is, the 

following condition tends to hold: 

^
22|| LStt mp σ<− . Furthermore, due to the 
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unbiased estimate of the least squares, we shall have  ttt mEm π== )(
^

 , according to 

(10). Thus, under the state of EMH, we have:

^
22|| LSttp σπ <−  □ 

          The EMH state can last as long as no new shocks arrive to shake up the market. In 

other words, if time is left to unfold, securities prices should never be too far out of their 

intrinsic worth. We then state that:  

          Proposition 3: In the long run, when all uncertainties resolve, securities prices 

tend to converge to companies’ intrinsic value 

        Proof:  In the short run, price tt mp → , whenever the weighted average is tipped 

toward rational expectations. In the long run, when all temporal shocks taper off, the 

weighted average: ππ →== ttt mEm )(
^

. Combining the two, we have:  π→tp □ 

         Conclusions  

   The approach presented here is simple, yet powerful enough to predict price/trend 

reversal in the short term. Therefore, the model can provide an accurate estimate of 

volatility of asset returns under volatility clustering and volatility asymmetry. The model 

can also estimate which securities are underpriced or overpriced, given the life time of 

companies under consideration is long enough. Through experiments, one can form the 

rule to increase the accuracy of the estimate process. Thus, a venture is opened for an 

experimental study on volatility. It is simple, yet efficient in financial practice.  
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Figure 1: Volatility Asymmetry  

 

 

 
 

Forecast errors tend to move in the same direction when price (GOLD) tumbles. In price reversal 

state, GOLD remains close to trend M (8856-64). During a short period of trend reversal (8851-

55), forecast errors jump from one side to the opposite side of the asymptotic confidence interval. 

(The sample size  = 2500 obs.)   
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Figure 2: In-sample-trend forecast P for trend M of price series at London Gold Fix: 

 

 
 

 

The five-step-ahead forecast captures the trend reversal that occurs at the point 8949. 

 

 

700

750

800

850

900

950

1000

8800 8825 8850 8875 8900 8925 8950

M P




