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Abstract

We develop a model of optimal pattern of economic development
that is first rooted in physical capital accumulation and then in tech-
nical progress. We study an economy where capital accumulation and
innovative activity take place within a two sector model. The first sec-
tor produces a consumption good using physical capital and non skilled
labor. Technological progress in the consumption sector is driven by
the research activity that takes place in the second sector. Research
activity which produces new technologies requires technological capital
and skilled labor. New technologies induce an endogenous increase of
the Total Factor Productivity of the consumption sector. Physical and
technological capital are not substitutable while skilled and non skilled
labor may be substitutable.
We show that under conditions of the adoption process of new tech-
nologies, the optimal strategy for a developing country consists in ac-
cumulating physical capital first; postponing the importation of tech-
nological capital to the second stage of development. This result is
due to a threshold effect from which new technologies begin to have
an impact on the productivity of the consumption sector. However,
we show that once a certain level of wealth is reached, it becomes op-
timal for the economy to import technological capital to produce new
technologies.
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1 Introduction

The growth performance of the East Asian newly industrialized economies
(NIEs) gave rise to a broad and diversified literature aiming at explaining
the reasons for such a long lasting period of expansion. On one hand, the
supporters of endogenous growth theory pinpoint productivity growth as
the key factor of East Asian success. According to these authors, Asian
countries have adopted technologies previously developed by more advanced
economies (assimilation view) and "the source of growth in a few Asian
economies was their ability to extract relevant technological knowledge from
industrial economies and utilize it productively within domestic economy"
(Pack [1992]). Implicitly, they admit that the TFP is one of the main fac-
tors of growth in accordance with the thesis developed by Solow [1957].
1 On the other hand, supporters of the accumulation view stress the im-
portance of physical and human capital accumulation in the Asian growth
process. According to this standard growth view, poorer countries should
grow faster than wealthier ones during their first stage of development. This
result is rooted in the assumption of decreasing returns to scale on capital
accumulation that induce a catching-up process compatible with conditional
convergence (Cass [1965]). As pointed out by Krugman [1994] "the newly
industrializing countries of the Pacific Rim have received a reward for their
extraordinary mobilization of resources that is no more than what the most
boringly conventional economic theory would lead us to expect. If there is
a secret to Asian growth, it is simply deferred gratification, the willingness
to sacrifice current satisfaction for future gain".
Besides this theoretical debate, on empirical grounds the continuous devel-
opment of growth accounting analysis gives us an insight into the respective
role of assimilation and accumulation on Asian growth process. In a first
wave of empirical studies, Young [1994, 1995], Kim and Lau [1994, 1996]
found that the postwar economic growth of the NIEs was mostly due to
growth in input factors (physical capital and labor) with no increase in the
total factor productivity. 2 Moreover, the hypothesis of no technical progress
cannot be rejected for the East Asian NIEs (Kim and Lau [1994]). Conse-
quently, accumulation of physical and human capital seems to explain the

1Solow, in this paper, used US data from 1909 to 1949 and showed that the capital
intensity contributed for one eight to the US economic growth. The remainder was due
to increased productivity

2Krugman [1997] wrote that Larry Lau and Alwyn Young works suggested that Asian
growth could mostly be explained by high saving rates, good education and the movement
of underemployed peasants into the modern sector.
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major part of the NIEs’ growth process. Krugman’s [1994] interpretation of
these results is very pessimistic since, according to him, the lack of technical
progress will inevitably bound the growth engine of East Asian NIEs as a
result of the diminishing returns affecting capital accumulation.
However, this pessimistic view is challenged by a second series of works
(Collins and Bosworth [1996] or Lau and Park [2003]) that show Total Fac-
tor Productivity (TFP) gains actually matter in Asian NIEs growth and
that future growth can be sustained. For these authors "it is possible that
the potential to adopt knowledge and technology from abroad depends on a
country’s stage of development. Growth in the early stages may be primar-
ily associated with physical and human capital accumulation, and significant
potential for growth through catchup may only emerge once a country has
crossed some development threshold" (Collins and Bosworth [1996]). These
findings concerning the East Asian economies in the post-war period are
also valid for developed economies in the early stages of their development
(Lau and Park [2003]). They suggest that in these stages, economic growth is
generally based on physical accumulation rather than technological progress.
Greater gains in TFP are possible only during the second stage of develop-
ment.3

The predominance of capital accumulation in a country’s first stage of de-
velopment is also compatible with cross-country empirical studies showing
that development patterns differ considerably between countries in the long
run (Barro&Sala-i-Martin [1995], Barro [1997]). These differences can be ex-
plained within a model of capital accumulation with convex — concave tech-
nology. In such a framework, Dechert and Nishimura [1983] prove the exis-
tence of threshold effect with poverty traps explaining alternatively “growth
collapses” or taking-off. 4 However, these results are challenged by King
and Rebelo [1993] who run simulations with neo-classical growth models
and conclude that the transitional dynamics can only play a minor role in
explaining observed growth rates. Dollar [1993] points out that divergence
between countries is also due to differences in TFP. Why is technology im-

3More precisely, Lau and Park show there was no technical progress for Hong Kong,
Korea, Singapore, Taiwan, Indonesia, Malaysia, Thailand until 1985. But suddenly, it ap-
peared in these countries between 1986 and 1995. For Western Germany, United Kingdom,
France, and Japan, technical progress always existed.

4For Parente and Prescott [1993], the popular thesis that countries which start below
a minimum level of output will fail to grow seems not supported by the facts. Azariadis
and Drazen [1990] propose an elaboration of the Diamond model that may have multiple
stable steady states because the training technology has many thresholds. They provide
an explanation to the existence of convergence clubs in Barro&Sala-i-Martin [1995], Barro
[1997]
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portant? Because it can be simultaneously employed in different uses (public
good as well as productive good). Dollar [1993] wrote "there are a number
of pieces of evidence indicating that succesful developing countries have bor-
rowed technology from the more advanced economies". We share the view of
Dollar and we think the so-called Solow-Krugman controversy is unfounded.
Krugman’s view is correct in the short and medium terms. But in the long
term, TFP is the main factor of growth. In this sense, Solow is right and
his 1956 model is basically a long term growth model. Even if these results
seem widespread in the empirical literature on growth accounting, there is
no theoretical model explaining the optimal shift of a country from the first
stage (accumulation) to the second stage (assimilation) of development. The
aim of our paper is to establish the formal conditions under which a coun-
try may realise (or not) this shift. More precisely, we define an endogenous
threshold of development from which a country is encouraged to adopt new
technologies and builds a part of its growth process on technological ad-
vances. Before reaching this threshold, the country must root its growth
process into capital accumulation.
Our model is based on the existence of complementarities in the use of new
technologies as it is necessary to have a minimum amount of adoption of
new technologies in order for them to be efficient. This assumption may be
justified by institutional structure (Atawell [1992], Castro et al. [2006]), by
start-up cost effect (Ciccone and Matsuyama [1999]), set-up costs (Azari-
adis and Drazen [1990]) or by several kinds of technical barriers relating to
the diffusion of innovation (Fichman [1992]). In order to encompass these
different aspects we assume the existence of a threshold effect from which
new technologies begin to have an impact on Total Factors Productivity. 5

Capital accumulation and innovative activity take place within a two sector
growth model. The first sector produces a consumption good using phys-
ical capital and non skilled labor according to a Cobb-Douglas production
function. Technological progress in the consumption sector is driven by the
research activity that takes place in the second sector. Research activity
which produces new technologies requires technological capital and skilled
labor along the line of a Cobb-Douglas production function. When new
technologies produced by the research activity are used in the consumption
sector they induce an endogenous increase of the Total Factor Productivity.
The two kinds of capital are not substitutable while skilled and non skilled

5Note that threshold effect is also used by Le Van and Saglam [2004] who show that a
developing country can restrain to invest in technology if the initial knowledge amount of
the country and the quality of knowledge technology are low or if the level of fixed costs
of the production technology is high.
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labors may be substitutable.
We suppose that technological capital, used by the research activity, is not
produced within the economy. The domestic economy must purchase it in
the international market at a given price. Consequently, the consumption
good can be consumed, invested as physical capital or exported against
technological capital. The price of the consumption good is given by the
international market and is used as numeraire in our economy. Finally, we
assume that physical capital is less costly than technological capital.
We show that under our conditions on the adoption process of new technolo-
gies, the optimal strategy for a developing country consists in accumulating
physical capital first; thus postponing the importation of technological capi-
tal to the second stage of development. All resources of the economy are de-
voted to consumption or investment in the physical capital sector and there
is no research activity. Later, the technological progress may be generated
when the country has reached a certain level of development. 6 This thresh-
old in the level of development is endogenously determined in the model
and is related to three factors: the amount of available human capital, the
relative price of technological capital and the initial income of the economy.
7 For given values of these factors, we show that there is a time period after
which it is optimal for the economy to import technological capital in order
to produce new technologies. From that date, research activity generates an
endogenous technical change and the economy follows an optimal endoge-
nous growth path with increasing returns to scale technology. Our model
exhibits an optimal pattern of economic development that is first rooted in
physical capital accumulation and then in technological progress. Thus, in
contrast to Dechert and Nishimura’s [1983] seminal model that exhibits a
convex-concave technology, our model displays first decreasing returns and
then increasing returns.
Nevertheless, as a consequence of the existence of the threshold, a country
may never be incited to adopt new technologies and may converge towards
a traditional steady state. This explains that international convergence or
divergence in income levels depends strictly on the value of the threshold.

6"As economic development proceeds, and per capita real output and tangible capital
stock begin to rise, investment in intangible capital becomes gradually more profitable
because of the complementarity between tangible and intangible capital and hence more
important as a potential source of economic growth" Lau and Park [2003]

7Khan and Ravikumar [2002] also characterized a threshold effect in the adoption of
new technologies in a model with fixed cost of adoption and linear technology. However,
in their model, this threshold only depends on the value of this fixed cost and on the
difference in productivity of the two technologies
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This result tempers Krugman’s pessimistic view on the future of East Asian
NIEs and explains the various schemes of development observed among de-
veloping countries.
The initial value of human capital plays an essential role in the process we
have just described. The higher this value, the sooner research activity and
endogenous growth will take place. This result is in accordance with the
empirical study of Benhabib and Spiegel [1994] showing that growth is re-
lated to the initial level of human capital and not to the accumulation of
human capital.
In the last part of the model we relax the assumption of non substitutability
between the two kinds of labor. We allow high-skilled workers to work in the
production sector. We show that the optimal endogenous growth path may
be compatible with an underutilization of high-skilled labor in the research
activity. However, if the number of high-skilled workers is low relatively to
the low-skilled workers then, after a certain time, the technological sector
will fully employ high-skilled workers.
Our paper is organized as follows. We present the structure of the economy
in Section 2. Section 3.1 deals with the infinitely lived optimal growth model
with non substitutable labor force. In Section 3.2, we allow a shift of high
skilled workers towards consumption sector but low skilled workers cannot
join the innovative sector. Section 4 gathers the main results of our paper
and points out weaknesses of our model. Sections 5 and 6 contain the proofs
of the results stated in Section 3.1 and Section 3.2.

2 The Structure of the Economy

We consider a developing country which produces a consumption good Yd
with physical capital Kd and low-skilled labor Ld. The consumption sec-
tor may use a quantity of new technologies Ye to increase its Total Factor
Productivity. We have:

Yd = φ (Ye)K
αd
d L1−αdd

where αd ∈ (0, 1) and φ is a non decreasing function which verifies φ (0) =
x0 > 0.

The amount of new technologies Ye may be produced through a Cobb-
Douglas function using technological capital Ke and high-skilled labor Le.
We have:

Ye = AeK
αe
e L1−αee .
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where αe ∈ (0, 1) and Ae is the total productivity.

The economy cannot produce technological capital whereas physical cap-
ital and consumption good are homogenous. It exports consumption good
in order to import technological capital. We use domestic consumption good
as numeraire. Prices are respectively λ > 1 for technological capital and 1
for consumption good and physical capital.

Let c be the total consumption, u1, u2 be the utility functions of low-
skilled and high skilled workers. Then u(c) = max{u1(c1L∗d) + u2(c2L

∗
e) :

c1L
∗
d + c2L

∗
e ≤ c}.

We assume:
(H1) The function u is strictly concave, strictly increasing, continuously
differentiable, and satisfies u(0) = 0, and the Inada Condition u0(0) = +∞.
and
(H2) The function φ has the following form

φ (x) =

½
x0,∀x ≤ X

x0 + a(x−X),∀x ≥ X with a > 0.

¾
The threshold in function φ may be interpreted either as a setup cost as
in Azariadis and Drazen [1990], or a minimum level of adoption of new
technologies which is necessary in order for them to impact the economy. In
this case, the economy of the developing country must be sufficiently rich in
resources or in human capital in order to take off by buying technological
capital.

Figure 1 sketches φ

3 The Dynamic Model

We consider now an economy with one infinitely lived representative agent
who has an intertemporal utility function. She has the possibilty to consume
or to save at each period t. Savings are directly used to buy an equivalent
amount of capital. This capital as before can be of two kinds, technological
or physical capital. As before, we suppose that the technological capital
costs more than the physical capital. There is no change in the production
functions of the consumption goods and of the new technology.

We distinguish two cases.
Case 1: No Mobility of Labour

∀t, Ld,t ≤ L∗d, Le,t ≤ hL∗e
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Figure 1:

These inequalities state there is no possible transfer between high-skilled and
low-skilled workers. We suppose the human capital for high-skilled workers
is measured by the number h ≥ 1.
Case 2: Mobility of Labour We now assume that high-skilled people can
work in the sector of consumption good if the demand for high-skilled labor
is not sufficient in the research sector. But the reverse is not possible, i.e.
low-skilled people cannot move in the new technology sector. We therefore
replace the constraints labor demands by : for every t,

Ld,t ≤ L∗e + L∗d

and
Le,t ≤ hL∗e

3.1 No Mobility of Labor

The social planner will solve the following program.

8



max
+∞X
t=0

βtu (ct) with 0 < β < 1,

under the constraints: for every date t,8

ct + St+1 ≤ φ (Ye,t)K
αd
d,tL

(1−αd)
d,t , (1)

Ye,t = AeK
αe
e,tL

1−αe
e,t , (2)

Ld,t ≤ L∗d, Le,t ≤ hL∗e, (3)

Kd,t + λKe,t = St. (4)

The initial resource S0 > 0 is given.
In (3), L∗d and L∗e are exogenous supplies of low-skilled and high-skilled

workers. As we said before, there is no possible transfer between high-skilled
and low-skilled workers.

Let θ = λKe,t

St
. Then (4) can be re-written

Kd,t = (1− θ)St, λKe,t = θSt (5)

This problem is equivalent to:

max
+∞X
t=0

βtu (ct)

under the constraints: for every date t,

ct + St+1 ≤ H (re, St) with

H (re, St) = max
θ

φ (reθ
αeSαe

t ) (1− θ)αd L∗
1−αd
d Sαd

t ,

and S0 > 0 is given, where re =
Aeh1−αeL

1−αe
e

λαe .
>From the Maximum Theorem, H is continuous. It is obviously strictly

increasing with respect to S and H (re, 0) = 0.
Since the utility function is strictly increasing, at the optimum the con-

straints will be binding.

ct = H (re, St)− St+1

8We assume the discount factor is the same for each category of workers.
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A sequence (St)t=0...∞ is called feasible from S0 ≥ 0 if we have ∀t, 0 ≤
St+1 ≤ H (re, St). Thus the initial program is equivalent to the following
problem

max
∞X
t=0

βtu (H (re, St)− St+1)

under the constraints,

0 ≤ St+1 ≤ H (re, St) , for all t ≥ 0,
with S0 > 0 given.9.
We denote by K∗

e,t,K
∗
d,t the corresponding optimal capital stocks and by θ

∗
t

the optimal share for technology capital.

3.1.1 Properties of the optimal path

In this subsection, we will present the main results of the model when labour
is not mobile. In particular, we will show that any optimal path from S0 > 0
is monotonic and does not converge to 0. Under some stronger conditions,
we will show that any optimal path will grow without bound. Along this
growth path, after a date T , the economy will use new technology to produce
consumption goods.

Proposition 1 (i) The function H(re, S) is increasing in S. Hence, any
optimal path from S0 is monotonic.
(ii) No optimal path from S0 > 0 converges to 0.
(iii) There exists Sc > 0 such that if St ≤ Sc, thenH(re, St) = x0L

∗(1−αd)
d St

αd.
Sc is a decreasing function of re.

Proof. See Appendix 1.

Proposition 2 Let Ss satisfy x0L
∗(1 − αd)αd(S

s)αd−1 = 1
β . Consider S

c

in Proposition 1.
(i) There exists r̄e which depends on (x0, a,X, αe, αd, β, L

∗
d) such that,if re >

r̄e, then any optimal path from S0 > 0 will be increasing. There exists T ,
such that for any t ≥ T , K∗

e,t > 0. The condition re > r̄e is equivalent to
Ss > Sc.
(ii) There exists ere which depends only on (x0, a,X, αe, αd, β, L

∗
d) such that

if re < ere then for any 0 < S0 < Sc, there exists a unique optimal path which
converges to Ss and K∗

e,t = 0 for every t.

9We assume that the utility function u is such that the sum
∞

t=0

βtu (H (re, St)− St+1)

is real-valued for any feasible sequence {St}
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Proof. See Appendix 1.

Proposition 3 Assume furthermore
(H3) αe + αd ≥ 1.
There exists Āe > 0 (or h̄ > 0) such that if Ae > Āe (or h > h̄) then any
optimal path (S∗t ) from S0 > 0, will converge to +∞. Moreover, K∗

e,t → +∞
and θ∗t → θ∞ = αe

αe+αd
.

Proof. See Appendix 1.
Comments
1. Ss is the steady-state of our economy in the case of concave technology. If
the critical value from which the economy becomes to import technological
capital and to produce new technologies (Sc) is higher than the steady-state
value, the economy will never take off. In fact it will converge to its steady-
state with a constant value of income per capita. On the contrary, if the
steady-state value is higher than the critical wealth from which the economy
produces new technologies, it will follow an endogenous growth path with
a constant increase in income per capita. More precisely, if for any period
t, the country does not invest in technology, then its economy converges to
Ss. But when Ae is very large, by investing in new technology from some
date T , the economy will grow without bound. Figure 2 gives a graphical
interpretation of proposition 3.
2. When re is small, we have a poverty trap: if S0 is smaller than Sc then
any optimal path starting with a positive capital stock will converge to Ss.

3.2 Mobility of labour

We now assume that high-skilled people can work in the sector of consump-
tion good if the demand for high-skilled labor is not sufficient in the research
sector. But the reverse is not possible, i.e. low-skilled people cannot move
into the new technology sector. We therefore replace the constraints labor
demands (3) by

Ld ≤ L∗e + L∗d (6)

and
Le ≤ hL∗e (7)

We can write Le = μhL∗e, Ld = L∗d+(1−μ)L∗e with μ ∈ [0, 1]. We assume that
when the high-skilled workers are in the consumption sector their human
capital equals the one of this sector.
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Figure 2:

The production function in the new technology sector will be:

Ye =
Ae

λαe
θαeSαeμ1−αeh1−αeL∗

1−αe
e

where μ represents the part of high skilled labor used in this sector.
The production function in the consumption good sector now is:

Yd = φ (Ye) (1− θ)αd Sαd (L∗d + (1− μ)L∗e)
1−αd

The social planner will solve the following program.

max
+∞X
t=0

βtu (ct) with 0 < β < 1,

under the constraints: for every date t,10

ct + St+1 ≤ φ (Ye,t)K
αd
d,tL

(1−αd)
d,t , (8)

Ye,t = AeK
αe
e,tL

1−αe
e,t , (9)

10We assume the discount factor is the same for each category of workers.
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Ld,t ≤ L∗e + L∗d, Le,t ≤ hL∗e, (10)

Kd,t + λKe,t = St. (11)

The initial resource S0 > 0 is given.
In (10), L∗d and L

∗
e are exogenous supplies of low-skilled and high-skilled

workers.
Again, let θ = λKe,t

St
. Let μ = Le,t

hL∗e
. Then

Kd,t = (1− θ)St, λKe,t = θSt, (12)

Le,t = μhL∗e, Ld,t = L∗d + (1− μ)L∗e, (13)

with μ ∈ [0, 1].
The problem becomes:

max
+∞X
t=0

βtu (ct)

under the constraints: for every date t,

ct + St+1 ≤ L (re, St) with

L (re, St) = max
θ∈[0,1],μ∈[0,1]

φ
¡
reθ

αeSt
αeμ1−αe

¢
(1− θ)αd (L∗d + (1− μ)L∗e)

1−αd St
αd

where S0 > 0 is given and re =
Aeh1−αeL

1−αe
e

λαe .
>From the Maximum Theorem, L is continuous. It is obviously strictly

increasing with respect to S and L (re, 0) = 0.
Since the utility function is strictly increasing, at the optimum the con-

straints will be binding.

ct = L (re, St)− St+1

A sequence (St)t=0...∞ is called feasible from S0 ≥ 0 if we have ∀t, 0 ≤
St+1 ≤ L (re, St). Thus the initial program is equivalent to the following
problem

max
∞X
t=0

βtu (L (re, St)− St+1)

under the constraints,

0 ≤ St+1 ≤ L (re, St) , for all t ≥ 0,

13



with S0 > 0 given.11.
We denote by K∗

e,t,K
∗
d,t the corresponding optimal capital stocks and by θ

∗
t

μ∗t , the optimal share for technology capital and the proportion of skilled
workers used in the new technology sector.

3.2.1 Properties of the optimal path with mobility of labor

In this subsection, we will present the main results of the model when labour
is mobile. As before, we will show that any optimal path from S0 > 0 is
monotonic and does not converge to 0. Under some stronger conditions,
we will show that any optimal path will grow without bound. Along this
growth path, after a date T , the economy will use new technology to produce
consumption goods and all the skilled workers will entirely be in the new
technology sector.

Proposition 4 (i) The function L(re, S) is increasing in S. Hence, any
optimal path from S0 is monotonic.
(ii) No optimal path from S0 > 0 converges to 0.
(iii) There exists Sc > 0 such that if St ≤ Sc, then L(re, St) = x0(L

∗
d +

L∗e)
(1−αd)St

αd. Sc is a decreasing function of re.

Proof. See Appendix 2.

Proposition 5 Let Ss satisfy x0L
∗(1 − αd)αd(S

s)αd−1 = 1
β . Consider S

c

in Proposition 4.
(i) There exists r̄e which depends on (x0, a,X, αe, αd, β, L

∗
d) such that,if re >

r̄e, then any optimal path from S0 > 0 will be increasing. There exists T ,
such that for any t ≥ T , K∗

e,t > 0. The condition re > r̄e is equivalent to
Ss > Sc.
(ii) There exists ere which depends only on (x0, a,X, αe, αd, β, L

∗
d) such that

if re < ere then for any 0 < S0 < Sc, there exists a unique optimal path which
converges to Ss and K∗

e,t = 0 for every t.

Proof. See Appendix 2.

Proposition 6 Assume furthermore
(H3) αe + αd ≥ 1.

11We assume that the utility function u is such that the sum
∞

t=0

βtu (L (re, St)− St+1)

is real-valued for any feasible sequence {St}

14



(i) There exists Āe > 0 (or h̄ > 0) such that if Ae > Āe (or h > h̄) then any
optimal path (S∗t ) from S0 > 0, will converge to +∞ and K∗

e,t → +∞ and
θ∗t → θ∞ = αe

αe+αd
.

(ii) If we assume furthermore L∗e
L∗d

< 1−αe
1−αd , then there exists T ≥ 0; such that

μ∗t = 1 for every t ≥ T .

Proof. See Appendix 2.
Comment Part (ii) of Proposition 6 states that for t large enough the new
technology sector may use all the skilled workers.

Remark 7 Consider the case where x0 = aX, αe+αd ≥ 1 and L∗e
L∗d
≥ 1−αe

1−αd .

From the first order conditions (36, 37) when S > Sc, we obtain that the
optimal values (θ∗, μ∗) are independent of S and respectively equal

θ∞ =
αe

αe + αd
, μ∞ =

(1− αe)(L
∗
d + L∗e)

(2− αd − αe)L∗e
.

The technological function of the optimal growth model becomes

L(re, S) = x0(L
∗
d + L∗e)

1−αdSαd if S ≤ Sc,

and

L(re, S) = areθ
∞αe

(1−θ∞)αdμ∞1−αe
(L∗d+(1−μ∞)L∗e)1−αdSαe+αd , if S > Sc.

The function L(re, ·) is concave-convex and differs from the case in Dechert
and Nishimura [1983] where the technology is convex-concave.
Add the assumptions (i) αe + αd = 1 and (ii) u(c) = cσ

σ with σ < 1. Then
for t large enough, we have

(
c∗t+1
c∗t
)1−σ = βare(αe)

2αe(αd)
2αd(L∗e + L∗d)

αe .

We have a balanced growth path in the long term. The rate of growth is
positively related to re (i.e. to Ae, h, and L∗e). In other words, if the
qualities of the new technology and/or the human capital and/or the number
of skilled workers are high, the rate of growth will be high too.

4 Conclusion

We summarize the results we obtain in the paper.
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1. When there is an adoption effect of new technologies by firms, there is
a critical value Sc for the domestic resource. Below this value, it is not
optimal for the country to invest in new technology. Above this value, it is
optimal to invest in new technology. The critical value decreases when the
human capital or/and the productivity of the new technology sector is high,
or/and the price of the new technology capital is low.
2. When the human capital is high and/or the productivity of the new
technology sector is high, in the dynamic setting, there is a date T1 such
that for any date beyond T1 the country will adopt the new technology and
grows without bound.
3. If we allow the high skilled workers to move to the consumption sector,
then may be a date T2 such that the new technology sector will use all the
high skilled workers only after this date. This result shows that is not always
optimal to have a very large number of high-skilled workers.
4. Here we want to sketch a country which faces the corruption phenomenon.
There are many ways to formalize this phenomenon. One is to assume that
the production function in the consumption sector exhibits fixed costs. But
it will raise many mathematical complications. So, we use the way proposed
by Dimaria and Le Van [2002]. We assume that at every date t, the bribers
divert a fraction η ∈ (0, 1) of national resource, St+1, devoted to the next
period investment. The amount ηSt+1 either goes abroad or is used for
consuming imported goods. In this case the constraints at every period are:

ct + St+1 = L(re, (1− η)St)

and
Kd,t + λKe,t = (1− η)St.

It is obvious that the new critical value S0
c
equals Sc

1−η , i.e. larger than S
c. It

converges to +∞ when η goes to 1. The new value S0
s
(corresponding to the

steady state of the optimal growth model without new technology) will be

Ss(1− η)
αd

1−αd , i.e. smaller than Ss. It converges to zero when η converges
to one. Assume the initial wealth S0 satisfy Sc < S0 < Ss allowing the
country to take off. In presence of high corruption (η close to 1), we have
S0

s
< S0 < S0

c
and the country will fall down by converging to S0

s
.

Observe that in this paper we obtain an optimal path which grows without
bound in contrast with usual Ramsey models. Our condition is the same as
in Kamihigashi and Roy [2007] for a more general setting.

Some limits of our model:
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1. We are in presence of non-convex technology. Our results must be inter-
preted as normative prescriptions for development since the optimal paths
of our model cannot be decentralized.
2. Here, technological capital is just a name for the capital that acts as
engine for growth and where there can be a threshold effect. Our technology
output may be knowledge. In this case, skilled workers might be researchers
or qualified engineers. Technology capital will be the machines used for
experiments necessary for producing knowledge.
3. In our model we introduce the relative price λ of the technology capital.
We want to point out that is is not always optimal to invest in the short
term in the technology if the price of the required capital is very high.
4. Our model has many weaknesses. The first is to assume that there is
full depreciation. In principle, we should write the budget constraint as
Id,t + λIe,t = St where Id,t and Ie,t are respectively investments in capi-
tal for domestic good and technology capital. The capital stocks will be
Kd,t+1 = Kd,t(1 − δd) + Id,t and Ke,t+1 = Ke,t(1 − δe) + Ie,t (δd and δe
are the depreciation rates). There will be a three dimension dynamics
(St,Ke,t,Kd,t). The problem will be hardly tractable. One possible way
is to use lattice programming. But our technology contraints do not ensure
that the feasible sequences are in a sublattice.
5. Another weakness of our model is to consider Ye as an intermediate
good and does not take into account the stock of all technologies. Suppose,
to make simple, that the TFP depends just on the stock of technologies
over two periods. In other words, suppose TFP is φ(Ye,t + Ye,t−1). In this
case, the constraints become 0 ≤ St+1 ≤ H(re, St, St−1). The dynamics will
become more complicated (see e.g. Mitra and Nishimura [2005]). We will
show that the critical value will decrease. Indeed, consider first the static
model. Assume the problem in the domestic sector now becomes

max
c,Ke,Kd,Le,Ld

Yd = φ (Ye + Ye,−1)K
αd
d L1−αdd (14)

where Ye,−1 is the stock of technology of the previous period. Recall that
φ(x) = x0 if x ≤ X, and φ(x) = x0 + a(x − X) if x ≥ X. In our case,
we will have φ (Ye + Ye,−1) = x0 if Ye ≤ X − Ye,−1 and φ (Ye + Ye,−1) =
x0+ a(Ye + Ye,−1−X) if Ye ≥ X − Ye,−1. The fixed cost now diminishes by
Ye,−1. Hence the critical value decreases too. The country will escape more
easily from the poverty trap. The dynamic problem will be:

max
+∞X
t=0

βtu (ct) with 0 < β < 1,
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under the constraints: for every date t,

ct + St+1 ≤ φ (Ye,t + Ye,t−1)K
αd
d,tL

(1−αd)
d,t , (15)

Ye,t = AeK
αe
e,tL

1−αe
e,t , (16)

Ld,t ≤ L∗e + L∗d, Le,t ≤ hL∗e, (17)

Kd,t + λKe,t = St. (18)

Along the optimal path, the TFP of the domestic sector will be obviously
higher than when it depends only on the the flow of technology. The optimal
path in our model will be feasible for the new model and then smaller than
the new optimal path. Observe that the new problem is non stationary. One
can not claim that the new optimal path is monotonic.
Anyway, we recognize that our modeling of new technology in terms of
flow is not realistic. However, it shows that new technology, even with this
restrictive assumption, allows emergence of growth. If we take into account
the stock of new technology, the sketch of the proof given above shows that
growth will then be enhanced.

5 Appendix 1: Proofs of Propositions 1, 2, 3

Preliminary
Consider the static problem:

max
c,Ke,Kd,Le,Ld

Yd = φ (Ye)K
αd
d L1−αdd (19)

Ye = AeK
αe
e L1−αee (20)

Kd + λKe = S (21)

Ld ≤ L∗d (22)

Le ≤ L∗eh (23)

Let θ = λKe
S . Then (21) can be re-written

Kd = (1− θ)S, λKe = θS (24)

Since at the optimum, Le = L∗eh, Ld = L∗d, the problem turns out to be

max
θ∈[0,1]

φ

Ã
Aeh

1−αeL∗
1−αe
e

λαe
θαeSαe

!
(1− θ)αdSαdL∗

1−αd
d (25)
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Let re = Ae
λαeL

∗1−αe
e h1−αe and ψ (re, S, θ) = φ (reθ

αeSαe) (1− θ)αd L∗
1−αd
d

Solving the previous problem becomes equivalent to solve

max
0≤θ≤1

ψ (re, S, θ) (26)

Since the function ψ is continuous in θ, there will always be an optimal
solution. Let be

G(re, S) = Argmax{ψ(re, S, θ) : θ ∈ [0, 1]}

and F (re, S) = max{ψ (re, S, θ) : θ ∈ [0, 1]}. From the Maximum Theorem,
F is continuous, and the maximum output of the consumption sector will
be H(re, S) = F (re, S)S

αd .

Lemma 8 (i) If S ≤ (Xre )
1
αe then G (re, S) = {0} .

(ii) there exists Ŝ such that: S > Ŝ ⇒ G (re, S) ⊂ ]0, 1[ .

Proof. (i) If S ≤ (Xre )
1
αe , then for any θ ∈ [0, 1], we have reSαeθαe ≤ X, and

hence ψ(r, S, θ) = x0(1 − θ)αdL∗
1−αd
d . Obviously, the maximizer is unique

and equals 0.
(ii) Observe that ∀S ≥ 0, F (re, S) ≥ x0L

∗1−αd
d . Let S0 > (Xre )

1
αe , and

θ̄(S0) satisfies reS
αe
0 θ̄(S0)

αe = X. Let θ̂ ∈]θ̄(S0), 1[. When S increases,
θ̄(S) decreases and θ̂ will be in ]θ̄(S), 1[. We have ψ(re, S, θ̂) → +∞ when
S → +∞. Hence, for S large enough, say, greater than some Ŝ, then
maxθ{ψ(re, S, θ)} > x0L

∗1−αd
d . That implies 0 /∈ G(re, S). Since ψ(re, S, 1) =

0, we have 1 /∈ G(re, S). The proof is complete.

We want to prove there is a critical value Sc, i.e., if S < Sc then
G(re, S) = {0} and if S > Sc then G(re, S) ⊂]0, 1[. In that case, the country
will import technological capital and produce new technologies as soon as
its wealth S is higher than the critical value Sc. Figure 3 illustrates that
point.

Let B = {S ≥ 0 : F (re, S) = x0L
∗1−αd
d }.

Lemma 9 B is non empty and compact.

Proof. (i) B is not empty: obviously, 0 ∈ B.
(ii) B is closed because the function F is continuous.
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(iii) To prove that B is bounded take a sequence Sn converging to +∞.
Fix some θ ∈]0, 1[. For n large enough, θ̄(Sn) < θ < 1. Then ψ(re, Sn, θ)
converges to +∞. This implies F (re, Sn) > x0 L

∗1−αd
d for any n sufficiently

large. That contradicts Sn ∈ B.

Lemma 10 Let Sc = max{S : S ∈ B}. Then if S < Sc we have G(re, S) =
{0} and if S > Sc then G(re, S) ⊂]0, 1[.

Proof. >From Lemma 8(i), Sc > 0 since it must be greater than (Xre )
1
αe .

From Lemma 9, Sc < +∞.
First, observe that if S < Sc then F (re, S) = x0L

∗1−αd
d . Indeed, we have

∀θ ∈ [0, 1], ψ(re, S, θ) ≤ ψ(re, S
c, θ).

Hence F (re, S) = maxθ{ψ(re, S, θ)} ≤ maxθ{ψ(re, Sc, θ)} = F (re, S
c) =

x0L
∗1−αd
d . Since ∀S ≥ 0, F (re, S) ≥ x0L

∗1−αd
d , we have F (re, S) = x0L

∗1−αd
d

Now, (i) if S > Sc, then from the very definition of Sc, we have G(re, S) ⊂
]0, 1[.
(ii) If S < Sc, then take some S0 < Sc. Suppose for S0 we have two solutions
θ1M = 0 and θ2M > 0. There must be θ̄0 ∈]0, 1[ which satisfies reSαe

0 (θ̄0)
αe =

X (if not, ∀θ, reSαe
0 ≤ X, and G(re, S0) = {0}). For θ ∈]0, θ̄0], we have

ψ(re, S, θ) = (1 − θ)αdx0L
∗1−αd
d < ψ(re, S, 0) = x0L

∗1−αd
d . Hence θ2M > θ̄0.

Let S0 < S1 < Sc, and θ̄1 satisfy reS
αe
1 θ̄

αe
1 = X. Then θ2M > θ̄0 > θ̄1. We

have
φ(reS

αe
0 (θ

2
M)

αe) = x0 + γ(reS
αe
0 (θ

2
M)

αe)

φ(reS
αe
1 (θ

2
M)

αe) = x0 + γ(reS
αe
1 (θ

2
M)

αe) > φ(reS
αe
0 (θ

2
M)

αe).

We obtain a contradiction

x0L
∗1−αd
d = F (re, S1) ≥ φ(reS

αe
1 (θ

2
M)

αe)(1− θ2M)
αdx0L

∗1−αd
d

> φ(reS
αe
0 (θ

2
M)

αe)(1− θ2M)
αdx0L

∗1−αd
d = F (re, S0) = x0L

∗1−αd
d .

Lemma 11 Every optimal path is monotonic

Proof. Notice that we have the following Bellman equation. Let V be the
value-function of the problem. We have

∀S0 ≥ 0, V (S0) = max {u (H (re, S0)− S) + βV (S) : 0 ≤ S ≤ H (re, S0)}
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Let Γ denote the optimal correspondence. From Amir [1996], this corre-
spondence is non decreasing, i.e.,
if S00 < S0 then ∀S01 ∈ Γ(re, S00), and ∀S1 ∈ Γ(re, S0), S01 ≤ S1.
Hence, any optimal path must be monotonic.

Lemma 12 Every optimal trajectory (S∗t ) from S0 > 0 cannot converge to
0.

Proof. Suppose that S∗t → 0. Then for t ≥ T, we have: S∗t < Sc. Hence,
∀t > T,H(re, S

∗
t ) = x0L

∗1−αd
d S∗t

αd and H 0
S (re, S

∗
t )→∞, because, St → 0.

As u0 (0) = +∞, we have Euler equation for t > T ,

u0 (c∗t ) = βu0
¡
c∗t+1

¢
H 0
S

¡
re, S

∗
t+1

¢
.

There exists T0 ≥ T such that for all t ≥ T0 we have H 0
S

¡
re, S

∗
t+1

¢
β > 1.

That implies u0 (c∗t ) > u0
¡
c∗t+1

¢
or equivalently, c∗t+1 > c∗t ≥ c∗T0 > 0. That is

contradictory with S∗t → 0 (because it would have for consequence c∗t → 0) .

Lemma 13 (i) The function F (re, S) is continuously differentiable with re-
spect to S in ]0, Sc[

S
]Sc,+∞[. At Sc, it has left derivative (equal to 0) and

right derivative.
(ii) For S > Sc, there exists a unique θM(S) ∈ G(re, S).

Proof. (i) (a) When S < Sc, from Lemma 10, we have F (re, S) = x0L
∗
d
1−αd .

(b) Consider the case where S > Sc. Let θ̄(S) satisfy reS
αe θ̄(S)

αe = X.
Since, when θ ≤ θ̄(S), ψ(re, S, θ) = x0(1 − θ)αdL∗

1−αd
d ≤ x0L

∗1−αd
d , from

the very definition of Sc, any solution must be larger than θ̄(S). Thus, any
solution θ must be interior to the interval ]θ̄(S), 1[, because ψ(re, S, 1) = 0.
The solution is unique since ψ(re, S, θ) is strongly concave in θ. One can
check that ∂2ψ

∂θ2
< 0. It satisfies ψ0θ(re, S, θ) = 0. Tedious computations give:

αe
αd

θαe−1(1− θ) =
x0 − aX

areSαe
+ θαe (27)

The left side member is a decreasing function in θ while the right side one
is increasing in θ. The solution θM is unique. One can check that

dθM
dS

=
A

B
(28)

with A = aX−x0
are

Sαe−1 and B = αe−1
αd

θαe−2M −(1+ αe
αd
)θαe−1M < 0. Thus F (re, ·)

is differentiable for S > Sc.
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(c) When S = Sc, there is a solution θ1M = 0 and another θ2M which is the
unique solution to equation (27). From Clarke ( [1983] , theorem 2.8.2),
there is a right derivative equal to ψ0S(re, S

c, θ2M) and a left derivative which
is trivially zero.
(ii) In (i) (b), we have shown that G(re, S) is a singleton {θM(S)} when
S > Sc.
Proof of Proposition 1
Proof of (i): It follows from Lemma 11
Proof of (ii): It follows from Lemma 12
Proof of (iii): Consider Sc the critical value defined in Lemma 10. Then for
St ≤ Sc, from the proof of this lemma, we get H(re, St) = x0L

∗(1−αd)
d St

αd .
>From Lemma 13, Sc and θc satisfy equation (27) which is

αe
αd
(θc)αe−1(1− θc) =

x0 − aX

are(Sc)αe
+ (θc)αe

and F (re, S
c) = x0L

∗
d
1−αd which can be rewritten as:

[x0 + a (re(θ
c)αe(Sc)αe −X)] (1− θc)αd = x0

Tedious computations show that this system is equivalent to

(x0 − aX)

∙
αe(1− θc)

αe − θc(αe + αd)

¸
(1− θc)αd = x0, (29)

αe
αd
(θc)−1(1− θc)− 1 = x0 − aX

are(θ
c)αe(Sc)αe

(30)

One can easily check that there is a unique solution θc ∈ (0, 1) to equation
(29). It depends only on (x0, aX,αe, αd). Equation (30) gives are(Sc)αe =
(x0 − aX)ζ(θc). Hence, when re increases, Sc decreases. The proof is com-
plete.
Proof of Proposition 2

Let us recall that K∗
d,t and K

∗
e,t respectively denote the optimal values of

the physical and the technological capital stock and θ∗t denotes the associated
optimal capital share, i.e. K∗

d,t = (1− θ∗t )S
∗
t and λK∗

e,t = θ∗tS
∗
t .

Proof of (i): Let r̄e satisfy equation (30) when S = Ss and θ = θc.
Obviously, r̄e only depends on (x0, a,X, αe, αd, β, L

∗
d). When S0 ≥ Sc,

since the optimal path (S∗t ) is nondecreasing, we have ∀t > 0,G(re, S
∗
t ) ⊂

]0, 1[ or equivalently K∗
e,t > 0.
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Consider the case S0 < Sc. If for any t, K∗
e,t = 0, then the optimal path (S

∗
t )

will converge to Ss (see e.g. Le Van and Dana, [2005], Chapter 2). Since we
assume Ss > Sc, there will be t with S∗t > Sc. In this case K∗

e,t > 0 which
is contradictory.
So, let T be the first date with S∗T > Sc. Since the optimal path (S∗t ) is
nondecreasing, we will have K∗

e,t > 0 for every t > T .

Proof of (ii): Let eS satisfy x0(L
∗
d)
1−αd eSαd = eS. Then eS depends only on

(x0, L
∗
d). Let ere satisfy equation (30) with S = eS and θ = θc. It depends

only on (x0, a,X,αe, αd, β, L
∗
d). When re < ere, or equivalently, Sc > eS,

any feasible path (St) from S0 < Sc will be less than Sc and is feasible for
the convex technology H(re, S) = x0(L

∗
d)
1−αdSαd . There exists a unique

optimal path from S0 and it converges to Ss. The proof of Proposition 2 is
complete.
Proof of Proposition 3
First observe that θ∗t and S∗t satisfy equation (27). Then when S converges
to +∞ then θ converges to θ∞.
We claim that H 0

S(re, S) 6= 1
β ,∀S.

Case 1: x0 − aX < 0. In this case dθM (S)
dS < 0 when S ≥ Sc (see (28)).

Therefore, for every S ≥ Sc, θM(S) > θ∞.
Let θM(S

c) be the unique maximizer associated with F (re, S
c) which is

strictly positive. For short, write θc instead of θM(Sc). Then (θc, Sc) satisfy
(27) and F (re, S

c) = x0L
∗1−αd . We obtain:

(x0 − aX)
αeθ

αe−1
c (1− θc)

αd+1

(αe + αd)θ
αe
c − αeθ

αe−1
c

+ x0 = 0.

We see that θc is independent of re hence Ae and h. If Ae (or h) is large

enough, then from (27) Sc < Ss = (βx0αd)
1

1−αd andH 0
S(re, S) >

1
β ,∀S ≤ Sc.

Consider the case where S > Sc. From the envelope theorem and relation
(27), we have

H 0
S(re, S) = areαeθM(S)

αe−1(1− θM(S))
αdSαe+αd−1L∗

1−αd
d .

We can bound this derivative from below:

H 0
S(re, S) > areαe(1− θc)

αdSαe+αd−1L∗
1−αd
d

and hence, when αe + αd > 1,

S < (
1

βareαe(1− θc)αdL∗
1−αd
d

)
1

αe+αd−1 , if H 0
S(re, S) =

1

β
.
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Again from (27) we can write Sc = ( ζ(a,x0,X)are
)
1
αe where the function ζ can be

easily computed. One can also easily check that ifAe (hence re) is sufficiently
large then S will be less than Sc which is a contradiction.
When αe + αd = 1, we have

H 0
S(re, S) > areαe(1− θc)

αdSαe+αd−1L∗
1−αd
d >

1

β

if re is large enough. Again, a contradiction.
Case 2: x0−aX > 0. As above, θc is independent of re. If Ae (or h) is large

enough, then from (27) Sc < Ss = (βx0αd)
1

1−αdL∗d and H 0
S(re, S) 6= 1

β ,∀S ≤
Sc. When S > Sc, from (27), we have θM(S) < θ∞. We then have

H 0
S(re, S) > areαe(1− θ∞)αdSαe+αd−1L∗

1−αd
d

and hence, when αe + αd > 1,

S < (
1

βareαe(1− θc)αdL∗
1−αd
d

)
1

αe+αd−1 , if H 0
S(re, S) =

1

β
.

Apply the same argument as above to obtain a contradiction.
When αe + αd = 1, we have

H 0
S(re, S) > areαe(1− θ∞)αdL∗

1−αd
d ≥ 1

β

if re is large enough.
Case 3: x0 = aX. From (27), we have θM(S) = θ∞,∀S ≥ Sc. It is easy to
check that

(Sc)αeare(θ
∞)αe(1− θ∞)αd = x0.

Obviously, when Ae or h are large then Sc < Ss. Since we now have for
S > Sc,

H(re, S) = are(θ
∞)αe(1− θ∞)αdLd

∗(1−αd)Sαe+αd

we get

H 0
S(re, S) = are(θ

∞)αe(1− θ∞)αdLd
∗(1−αd)(αe + αd)S

αe+αd−1

and S < Sc if H 0
S(re, S) =

1
β , and αe + αd > 1. That is a contradiction.

When αe + αd = 1, tedious computiations give

H 0
S(re, S) =

x0
(Sc)αe

Ld
∗(1−αd) >

x0
(Ss)αe

Ld
∗(1−αd)
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Since Ss = (βx0αd)
1

(1−αd)Ld
∗ and αe = 1−αd, we get H 0

S(re, S) > (
1
β )(

1
αd
) >

( 1β ). That is a contradiction. We have proven our claim.
Any optimal path from S0 > 0 must be increasing since it cannot converge
to 0. If it is bounded then it will converge to a point bS with H 0

S(re,
bS) = 1

β .
But it is impossible from our claim. Hence any optimal path must converge
to +∞. Therefore, K∗

t also converges to +∞. From equation (27), θ∗t
converges to αe

αe+αd
. The proof is now complete.

6 Appendix 2: Proof of Propositions 4, 5, 6

Preliminary
Let re = Ae

λαe h
1−αeL∗

1−αe
e . The first step is:

max
0 ≤ θ ≤ 1
0 ≤ μ ≤ 1

Yd = φ
¡
reθ

αeSαeμ1−αe
¢
(1− θ)αd Sαd (L∗d + (1− μ)L∗e)

1−αd .

Let

ϕ (re, S, θ, μ) = φ
¡
reθ

αeSαeμ1−αe
¢
(1− θ)αd (L∗d + (1− μ)L∗e)

1−αd .

The problem is equivalent to

max
(θ,μ)∈[0,1]×[0,1]

ϕ (re, S, θ, μ) .

Let
F (re, S) = max

(θ,μ)∈[0,1]×[0,1]
ϕ (re, S, θ, μ) .

Then F (re, S) ≥ x0 (L
∗
d + L∗e)

1−αd . As before, defineB = {S ≥ 0 : F (re, S) =
x0 (L

∗
d + L∗e)

1−αd}. It is easy to check that B is compact and nonempty. The
critical value is

Sc = max{S : S ∈ B}
Observe that for S > Sc the function

Z(re, S, θ, μ) = Log(ϕ(re, S, θ, μ))

is strongly concave in (θ, μ). Since maximizing ϕ(re, S, θ, μ) is equivalent
to maximize Z(re, S, θ, μ) when S > Sc, the solution (θM(S), μM(S)) will
be unique. Obviously, if S > Sc then θM(S) > 0 (if not, we will have
μM(S) = 0 and F (re, S) = x0 (L

∗
d + L∗e)

1−αd).
Proof of Proposition 4
Proofs of (i) and (ii): They are similar to the ones for Proposition 1.
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Proof of (iii): As before θc, μc and Sc satisfy ϕ0θ (re, S
c, θc, μc) = 0, ϕ0μ (re, S

c, θc, μc) =

0, and F (re, Sc) = x0 (L
∗
d + L∗e)

1−αd). One can easily check that these equa-
tions are equivalent to (we write θ, μ, S instead of θc, μc, Sc, for short):

αe
αd

θ−1(1− θ) =

∙
x0 − aX

areθ
αeμ1−αeSαe

+ 1

¸
(31)

1− αe
1− αd

μ−1
∙
L∗d + (1− μ)L∗e

L∗d

¸
=

∙
x0 − aX

areθ
αeμ1−αeSαe

+ 1

¸
(32)

£
x0 − aX + areθ

αeμ1−αeSαe
¤
(1− θ)αd = x0

µ
L∗d + L∗e

L∗d + (1− μ)L∗e

¶1−αd
(33)

They are equivalent to equation (33) and

αe
αd

θ−1(1− θ) =
1− αe
1− αd

μ−1
∙
L∗d + (1− μ)L∗e

L∗d

¸
(34)

(x0 − aX)

∙
αe(1− θ)

αe − θ(αe + αd)

¸
(1− θ)αd = x0

µ
L∗d + L∗e

L∗d + (1− μ)L∗e

¶1−αd
(35)

θc and μc are determined by equations (34) and (35) and depend only on
(x0, aX, αe, αd,

∗
d, L

∗
e). From equation (33) we see that Sc is a decreasing

function of re. We have proved Proposition 4.
Proof of Proposition 5
Proof of (i): It is similar the one of Proposition 2.
Proof of (iii): Let eS satisfy x0(L

∗
d + L∗e)

1−αd eSαd = eS. Then eS depends
only on (x0, L∗d). Let ere satisfy equation (33) with S = eS, θ = θc and
μ = μc. It depends only on (x0, a,X, αe, αd, β, L

∗
d, L

∗
e). When re < ere, or

equivalently, Sc > eS, any feasible path (St) from S0 < Sc will be less than
Sc and is feasible for the convex technology L(re, S) = x0(L

∗
d+L∗e)

1−αdSαd .
There exists a unique optimal path from S0 and it converges to Ss. We have
completely proved Proposition 5.

Before proving Proposition 6 we give some lemmas.

Lemma 14 Assume L∗e
L∗d

< 1−αe
1−αd . Then there exists S̄ such that if S > S̄

then μM(S) = 1.

Proof. Assume the statement false. Then there exists a sequence (Sn)
converging to +∞ with μM(Sn) < 1,∀n. We may assume μM(Sn)→ μ̄ ≤ 1
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and θM(Sn)→ θ̄. For short, write μn = μM(Sn) , θn = θM(Sn). For every
n, we have

x0 + a(reS
αe
n θαen μ1−αen −X)(1− θn)

αd(L∗d + (1− μn)L
∗
e)
1−αd

≥ x0 + a(reS
αe
n θαeμ1−αe −X)(1− θ)αd(L∗d + (1− μ)L∗e)

1−αd

for every θ ∈ [0, 1], every μ ∈ [0, 1]. This inequality is equivalent to

x0
Sαe
n
+ a(reθ

αe
n μ1−αen − X

Sαe
n
)(1− θn)

αd(L∗d + (1− μn)L
∗
e)
1−αd

≥ x0
Sαe
n
+ a(reθ

αeμ1−αe − X

Sαe
n
)(1− θ)αd(L∗d + (1− μ)L∗e)

1−αd .

Let Sn converge to infinity. We obtain

areθ̄
αeμ̄1−αe(1− θ̄)αd(L∗d + (1− μ̄)L∗e)

1−αd

≥ areθ
αe μ1−αe(1− θ)αd(L∗d + (1− μ)L∗e)

1−αd > 0 if θ ∈]0, 1[, μ > 0.

That implies θ̄ ∈]0, 1[, μ̄ > 0. But for every n we also have:

x0 + a(reS
αe
n θαen μ1−αen −X)(1− θn)

αd(L∗d + (1− μn)L
∗
e)
1−αd

≥ x0 + a(reS
αe
n θαen μ1−αe −X)(1− θn)

αd(L∗d + (1− μ)L∗e)
1−αd .

Since μn ∈ (0, 1) we get the first order condition for μn:

areθ
αe
n (1− αe)μ

−αe
n (L∗d + (1− μn)L

∗
e) =

L∗e(1− αd)[
x0 − aX

Sn
+ areθ

αe
n μ1−αen ].

Let Sn converge to infinity. We obtain μ̄ =
(1−αe)(L∗d+L∗e)
(2−αe−αd)L∗e

. And μ̄ > 1 if
L∗e
L∗d

< 1−αe
1−αd . That implies μn = 1 for any n large enough.

Lemma 15 Let S > Sc. Assume L∗e
L∗d

< 1−αe
1−αd and x0 − aX ≤ 0. Then

μM(S) = 1.

Proof. To make short, write (θM , μM) instead of (θM(S), μM(S)). If
(θM , μM) are interior we have the following first-order conditions

θαe−1M μ1−αeM αe(1− θM) =

∙
x0 − aX

areSαe
+ θαeMμ1−αeM

¸
αd, (36)
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θαeMμ−αeM (1− αe)(L
∗
d + (1− μM)L

∗
e) =

∙
x0 − aX

areSαe
+ θαeMμ1−αeM

¸
(1− αd)L

∗
e.(37)

If x0 − aX ≤ 0, then from (37) we obtain μM ≥ μ∞ =
(1−αe)(L∗d+L∗e)
(2−αd−αe)L∗e

. But

if L∗e
L∗d

< 1−αe
1−αd , then μ∞ > 1 and we have a contradiction. Since μM > 0, we

must have μM = 1.
Observe that along an optimal path, we cannot ensure the supply of high-
skilled labor be exhausted. The following lemma gives a condition for which
that will be true.

Lemma 16 Assume that the optimal path (S∗t ) converges to +∞ and L∗e
L∗d

<
1−αe
1−αd . Then there exists T such that ∀t > T, μ∗t = 1.

Proof. That is a corollary of Lemma 14
Proof of Proposition 6
Proof of (i): The proof that K∗

t converges to +∞ is the same as in Propo-
sition 3.
Proof of (ii):
When x0 − aX ≤ 0 then from Lemma 15, we have μ∗t = 1 for every t ≥ 0.
When x0 − aX > 0, apply Lemma 16.

References

[1] Amir, R., Sensitivity Analysis in Multisector Optimal Economic Mod-
els, Journal of Mathematical Economics, 25, pp. 123-141, 1996.

[2] Azariadis, C, and A. Drazen, Threshold Externalities in Economic De-
velopment, The Quarterly Journal of Economics, 105, 501-526, 1990.

[3] Atawell, P., Technology Diffusion and Organizational Learning: the
Case of Business Computing, Organizational Science, 3(1), 1-19, 1992.

[4] Barro, R. Determinants of Economic Growth. A Cross-Country Empir-
ical Study, MIT Press, Cambridge, 1997.

[5] Barro, R. and Sala-i-Martin, X., Economic Growth, McGraw Hill, New
York, 1995.

[6] Benhabib, J. and Spiegel, M.M., The Role of Human Capital in Eco-
nomic Development: Evidence from Aggregate Cross-Country Data,
Journal of Monetary Economics, 34,2, 1994.

29



[7] Cass, D., Optimal Growth in an Aggregative Model of Capital Accu-
mulation, Review of Economic Studies, 32, 1965.

[8] Castro, R., Clementi, G.L. and G. MacDonald, Legal Institutions, Sec-
toral Heterogeneity, and Economic Development, Working Paper, De-
partement de Sciences Economiques, Universite de Montreal, 2006.

[9] Ciccone, A and Matsuyama, K., Start-up Costs and Pecuniary Exter-
nalities as Barriers to Economic Development, Journal of Development
Economics, 49, 33-59, 1996.

[10] Clarke, F.H., Optimization and Nonsmooth Analysis, John Wiley and
Sons, 1983.

[11] Collins, S. and B. Bosworth, Lessons from East Asian Growth: Accu-
mulation versus Assimilation, Brookings Papers on Economic Activity,
1996.

[12] Dechert, W.D. and Nishimura, K., A Complete Characterization of Op-
timal Growth Paths in an Aggregated Model with a Non-Concave Pro-
duction Function, Journal of Economic Theory, 31, pp. 332-354,1983.

[13] Dimaria, Ch-H. and Le Van, C., Optimal Growth, Debt, Corruption
and R-D, Macroeconomic Dynamics, 6, pp. 597-613, 2002.

[14] Dollar, D., Technological Differences as a Source of Comparative Ad-
vantage, The American Economic Review, 83, 431-435, 1993.

[15] Fichman, R.G., Information Technology Diffusion: A Review of Empir-
ical Research, Proceedings of the Thirteenth International Conference
on Information Systems, 195-206, 1992

[16] Kamihigashi, T., and Roy, S., A Nonsmooth, Nonconvex Model of Op-
timal Growth, Journal of Economic Theory, 132, 435-460, 2007.

[17] Khan, A., and Ravikumar, B.,Costly Technological Adoption and Cap-
ital Accumulation, Reviews of Economic Dynamics, 5, 2002.

[18] Kim, J., and Lau, L., The Sources of Economic Growth in the East
Asian Newly Industrial Countries, Journal of Japanese and Interna-
tional Economics, 8, 1994.

[19] King, R.G. and S. Rebelo, Transitional Dynamics and Economic
Growth in the Neoclassical Model, The American Economic Review,
83, 908-931, 1993.

30



[20] Krugman, P., The Myth of Asia’s Miracle, Foreign Affairs, 73, 62-78,
1994.

[21] Krugman, P. What Ever Happened to the Asian Miracle?, Fortune,
Aug. 18, 1997

[22] Lau, L. and J. Park, The Sources of East Asian Economic Growth
Revisited, Conference on International and Development Economics in
Honor Henry Y. Wan, Jr., Cornell University, Ithaca, September 6-7,
2003.

[23] Le Van, C. and Dana, R.A., Dynamic Programming in Economics,
Kluwer Academic Publishers, 2003.

[24] Le Van, C. and Cagri Saglam, H., Quality of Knowledge Technology, Re-
turns to Production Technology, and Economic Development, Macro-
economic Dynamics, 8, 147-161, 2004.

[25] Mitra, T. and K. Nishimura, Intertemporal Complementarity and Op-
timality: A Study of A Two-Dimensional Dynamical System, Interna-
tional Economic Review, 46, 93-131, 2005.

[26] Pack, H., Technology Gaps, between Industrial and Developing Coun-
tries: Are there Dividends for Latecomers?, in Proceedings of the World
Bank Annual Conference on Development Economics, edited by L.H.
Summers and S. Shah, Washington: World Bank, 1992.

[27] Parente, S. and E. Prescott, Changes in the Wealth of Nations, Quar-
terly Review, 1993.

[28] Romer, P., Increasing Returns and Long Run Growth, Journal of Po-
litical Economy, 1002-1037, 1986.

[29] Romer, P., Idea Gaps and Object Gaps in Economic Development,
Journal of Monetary Economics, 32, 543-573, 1993.

[30] Solow, R., A Contribution to the Theory of Economic Growth, The
Quarterly Journal of Economics, 70, 65-94, 1956.

[31] Solow, R., Technical Change and the Aggregate Production Function,
Review of Economics and Statistics, 39, 312-320, 1957.

[32] Young, A., Lessons from East Asian NICs: a Contrarian View, Euro-
pean Economic Review, 38, 964-973, 1994

31



[33] Young, A., The Tyranny of Numbers: Confronting the Statistical Re-
alities of the East Asian Growth Experience, The Quarterly Journal of
Economics, 110, 641-680, 1995.

32


