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Abstract

We consider a general equilibrium model in asset markets with a countable
set of states and expected risk averse utilities. The agents do not have the
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1 Introduction

Expected utility with additive probability theories, e.g, Savage’s (1954) and
Anscombe and Aumann’s (1963) are known as standard formulation of decision
under uncertainty. Since the seminal paper of Hart (1974), the question of ex-
istence of equilibrium in the unbounded securities exchange model has been a
subject of much development. In finite dimension economies, one of a crucial
assumption interpreted as a no-arbitrage-condition be used to prove the com-
pactness of the individually rational utility (see,e.g, Werner 1987, Nielsen 1989,
Page and Wooders 1996, Allouch et al. 2002). This assumption together with
other standard assumptions are sufficient condition for the existence of equilib-
rium. However, in infinite dimension economies, the no-arbitrage condition are
not sufficient to ensure the compactness of the utility set. Therefore, to find the
conditions for which the compactness of utility set holds is interested by many
authors. (e.g,Cheng 1991, Dana et al, (1999), Dana and LeVan 2000). Recently,
Le Van and Truong Xuan (2001) have proved the compactness of utility set (
and hence the existence of equilibrium followed), in asset market with consump-
tion set equal to Lp, separable utilities and the continuum states which belong
to [0,1]. Following this direction, we consider a general equilibrium model in
asset markets with a countable set of states and expected risk-averse utilities.
The agents do not have the same beliefs. We use the methods in Le Van -
Truong Xuan (2001) but one of their assumption which is crucial for obtain-
ing their result cannot be accepted in our model when the number of states is
countable. Moreover, by assuming the existence of a common marginal utility
price, the proof we give is more natural and simple than the one given in Le
Van and Truong Xuan (2001). The existence of a quasi-equilibrium in L1 can
be also derived.

The paper is organized as follows. In Section 2, we give a proof of existence
of equilibrium in a model with expected risk-averse utilities the number of states
is infinitely countable. Section 3 we consider the case of continuum states as in
Le Van and Truong Xuan (2001) but we relax one of their crucial assumption.
Section 4 prove the existence of equilibrium in the case of finite number of states
by exploiting the similarity of NUBA and WNMA.

2 The model with infinitely countable states

First, we consider the case where the set of states possible is countable. There
are m agents indexed by 1, . . . , m. Each agent has a probability (πi

s)
∞
s=1 in

the set ∆ := {π ∈ R∞ :
∑+∞

s=1 πs = 1}. Let us denote the probability π =
1
m

∑m
i=1 πi, a consumption set Xi = Lp(π) with 1 ≤ p ≤ ∞ and an endowment

ei ∈ Lp(π). We assume that for each agent i, there exists a concave, strictly
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increasing function ui from R to R and consumer i choose a portfolio xi =
(xi

s)
∞
s=1 ∈ Lp(π) to solve the problem

maxU i(xi) = max
∞∑

s=1

πi
su

i(xi
s)

We recall the notion set of individually rational attainable allocations A is
defined by

A = {(xi) ∈ (Lp)m |
m∑

i=1

xi =
m∑

i=1

ei and U i(xi) ≥ U i(ei) for all i.}

The individually rational utility set U is defined by

U = {(v1, v2, ..., vm) ∈ Rm | ∃x ∈ A s.t U i(ei) ≤ vi ≤ U i(xi) for all i.}

Let us denote, for each agent i, ai := inf ui′(z), bi := supui′(z).

Assumption 1 ∃ p ∈ (Lp)∗, ∃(λi) ∈ Rm
++, ∃(x1, . . . , xm) ∈ A such that: ∀ i, s,

ps = λiπ
i
su

i′(xi
s) and

inf
s

ui′(xi
s) = mi > ai

sup
s

ui′(xi
s) = M i < bi

Remark From the assumption 1, we know that all the probabilities πi are
equivalences and hence equivalences with π.

Assumption 2 For all i = 1, 2, ...,m, bi = +∞.

Proposition 1 With the assumption 1 there exists C > 0 such that for all
(x1, . . . , xm) ∈ A, we have:

+∞∑

s=1

ps|xi
s| < C

for all i.

Proof : From the condition ∀ i ai < mi = infs ui′(xi
s) ≤ sups ui′(xi

s) = M i < bi,
there exist η > 0 such that

ai < ui′(xi
s)(1 + η) < bi (1)

for all i.
Then we define the price q such that, ∀i, j,

qs = λiπ
i
su

i′(xi
s)(1 + η)

= λjπ
j
su

j′(xj
s)(1 + η).
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It follows from ( 1) that, for each i, there exist zi ∈ L∞ such that ∀s, qs =
λiu

i′(zi
s). Note that

∀s, ps < qs.

Denote

xi+ : =

{
xi if xi > 0

0 if x ≤ 0

xi− : =

{
−xi if xi < 0

0 if xi ≥ 0

From the concavity of the utility function ui we have

λi

∞∑

s=1

πi
su

i(xi
s)− λi

∞∑

s=1

πi
su

i(xi+
s ) ≥ λi

∞∑

s=1

πi
su

i′(xi
s)(x

i
s − xi+

s ),

λi

∞∑

s=1

πi
su

i(zi
s)− λi

∞∑

s=1

πi
su

i(−xi−
s ) ≥ λi

∞∑

s=1

πi
su

i′(zi
s)(z

i
s + xi−

s )

Therefore,

λi

∞∑

s=1

πi
su

i′(zi
s)x

i− ≤ λi

∞∑

s=1

πi
s[u

i(zi
s) + ui(xi

s)− ui(xi+
s )− ui(xi−

s )]

−λi

∞∑

s=1

πi
su

i′(zi
s)z

i
s + λi

∞∑

s=1

πi
su

i′(xi
s)x

i+
s .

which implies

∞∑

s=1

qsx
i−
s ≤ λi[U i(zi) + U i(xi)− U i(xi)]−

∞∑

s=1

qsz
i
s +

∞∑

s=1

psx
i+
s

≤ λi[U i(zi) + U i(xi)− U i(ei)]−
+∞∑

s=1

qsz
i
s +

∞∑

s=1

psx
i+
s .

Hence, ∀i,
+∞∑

s=1

(qs − ps)xi−
s ≤ Ci +

+∞∑

s=1

psx
i
s

where
Ci = λi[U i(zi) + U i(xi)− U i(ei)].

Thus we have
m∑

i=1

∞∑

s=1

(qs − ps)xi−
s ≤

m∑

i=1

Ci +
m∑

i=1

∞∑

s=1

psx
i
s

=
m∑

i=1

Ci +
∞∑

s=1

pse
i
s = C1.
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Since xi−
s ≥ 0,∀i, s, we get

∞∑

s=1

(qs − ps)xi−
s ≤ C1

for all i. We also have
m∑

i=1

∞∑

s=1

(qs − pq)(xi+
s − xi−

s ) =
∞∑

s=1

(qs − ps)es

which implies
m∑

i=1

∞∑

s=1

(qs − ps)xi+
s =

∞∑

s=1

(qs − ps)es −
m∑

i=1

∞∑

s=1

(qs − ps)xi−
s

≤ C2

Thus ∞∑

s=1

(qs − ps)|xi
s| ≤ C1 + C2 =: C

which implies

η
∞∑

s=1

ps|xi
s| ≤ C.

Remark 1. The condition (xi) ∈ L∞ is not sufficient for the existence of
Assumption 1, because the utility function can be linear by pieces.
2. In the proof of boundedness above, we used the property U i(xi) ≥ U i(ei).
However, We can use a weaker assumption that there exists a constant a such
that U i(xi) ≥ a for all i.

Note that ps = λiπ
i
su

i′(xi
s) ≥ λiπ

i
sm

i, so there exist the constant C > 0 such
that: ∞∑

s=1

πi
s|xi

s| ≤ C

with all (x1, x2, . . . , xm) ∈ A. From this property and by using Jensen’s in-
equality, we have the following Lemma

Lemma 1 There exists C > 0 such that for all (x1, x2, . . . , xm) ∈ A, U i(xi) <

C

Thus we get the following Theorem which will be used later.

Theorem 1 With the assumptions 1 and 2, in the case Xi = L∞(π), for all
ε > 0, there exists N > 0 such that

∞∑

s=N

πi
s|xi

s| < ε

for all (x1, x2, ..., xm) ∈ A, for all i.
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Proof : Assume the contrary, there exists a sequence (x1(n), x2(n), ..., xm(n)) ∈
A and a constant c > 0 such that

∞∑
s=n

|xi
s(n)| > c

Without loosing of the generality, we can suppose that
∑∞

s=n |xi
s(n)| → c > 0.

We can assume that there exists i limn→∞
∑∞

s=n πi
s|xi

s| = c > 0⇒ limn→∞
∑∞

s=n πi
sx

i+
s (n)−

limn→∞
∑∞

s=n πi
sx

i−
s (n) = c. For every s, ∃j such that xj

s(n) < −xi
s−|es|
m−1 . There

is an finite j 6= i, then for the simplicity, we can assume that there exists j fixed
such that i and j satisfies the properties:
1. ∃ Ei

n ⊂ N ∩ {s ≥ n}, xi
s > 0 for all s and

lim
n→∞

∑

s∈Ei
n

πi
sx

i
s = ci > 0

2. For all s ∈ Ei
n

xj
s(n) ≤ −xi

s(n)− |es|
m− 1

With each M > 0, define the set Si
n ⊂ Ei

n the states s satisfies:

xi
s(n)− |es|
m− 1

> M

and for all s ∈ Si
n we have:

xj
s(n) ≤ |es| − xi

s(n)
m− 1

< −M

We can see that limn→+∞
∑

s∈Si
n

πi
sx

i
s = ci. The two probabilities πi and πj

are equivalent, then we have limn→∞
∑

s∈Si
n

πj
sxi

s = cj > 0. Now consider the
sequence (y1(n), y2(n), . . . , ym(n)) defined by:

yi
s(n) := xi

s(n)− xi
s − |es|
m− 1

+ M with s ∈ Si
n

yj
s(n) := xj

s(n) +
xi

s − |es|
m− 1

−M with s ∈ Si
n

yk
s = xk

s with every k 6= i, j or s /∈ Si
n.

Remarks that yi
s(n) ≤ xi

s(n) and yj
s(n) ≥ xj

s(n) for all s. We will prove that
(U l(yl(n)))l=1,m is bounded below, but is not bounded above, that leads us to
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a contradiction with the Lemma 1.

U i(yi(n))− U i(xi(n)) =
∑

s∈Si
n

πi
s(u

i(yi
s(n))− ui(xi

s(n)))

≥
∑

s∈Si
n

πi
su

i′(xi
s(n)− xi

s − |es|
m− 1

+ M)(−xi
s − |es|
m− 1

+ M)

≥
∑

s∈Si
n

πi
su

i′(M)(− xi
s(n)

m− 1
) + ui′(M)(

|es|
m− 1

+ M)
∑

s∈Si
n

πi
s

≥ −ui′(M)
m− 1

∑

s∈Si
n

πi
sx

i
s(n) + ui′(M)(

|es|
m− 1

+ M)
∑

s∈Si
n

πi
s

Let n → +∞ we have:

lim inf
n→+∞ U i(yi(n)) ≥ vi − ui′(M)ci

m− 1

so for great n, U i(yi(n)) is bounded below. Now we will see U j(yj(n)).

U j(yj(n))− U j(xj(n)) =
∑

s∈Si
n

πj
s(u

j(yj
s(n))− uj(xj

s(n)))

≥
∑

s∈Si
n

πj
su

j′(xj
s(n) +

xi
s(n)− |es|
m− 1

−M)(
xi

s(n)− |es|
m− 1

−M)

U j(yj(n))− U j(xj(n)) ≥
∑

s∈Si
n

πj
sbj(

xi
s(n)− |es|
m− 1

−M)

≥ uj′(−M)
m− 1

∑

s∈Si
n

πj
sx

i
s(n)−M

∑

s∈Si,j
N

πi
s

So we have the limit

lim inf
n→+∞ U j(yj(n)) ≥ vj +

uj′(−M)cj

m− 1

So if bi = +∞, we can choose M very large, and the limit of U j(yj(n)) is
unbounded above: a contradiction.

The next Lemma show that the sum is bounded uniformly.

Lemma 2 If p = ∞, for all ε > 0, there exist N > 0 such that for all
(x1, x2, . . . , xm) ∈ A, for all i,

∞∑

s=N

πi
su

i(xi
s) < ε
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Proof : Fixe a ∈ R arbitrarily, we have ui(a)− ui(xi
s) ≥ ui′(a)(a− xi

s), so with
every N > 0,

∞∑

s=N

πi
su

i(xi
s) ≤ [ui(a)− ui′(a)a]

∞∑

s=N

πi
s + ui′(a)

∞∑

s=N

πi
sx

i
s

From the Lemma above, in choosing N large sufficiently, we have
∑

s≥N πi
su

i(xi
s) <

ε with every (x1, x2, ..., xm) ∈ A.

We know that U is bounded. Suppose that there exists a sequence in U

(v1(n), v2(n), ..., vm(n)) → (v1, v2, ..., vn). We have to find that if (v1, v2, ..., vm) ∈
A. Denote the sequence (x1(n), x2(n), ..., xm(n)) ∈ A such that U i(xi(n)) =
vi(n) for all i.

Theorem 2 Under the Assumptions 1 and 2, U is closed for every p.

Proof : Note that L∞ ⊂ Lp for every 1 ≤ p ≤ ∞. We have two cases:
I There exists M > 0,N > 0 such that for all n > N , for all i, s: |xi

s(n)| < M .
II For all M > 0, there exists n, i, s such that |xi

s(n)| > M .
Consider the first case. From the Theorem 1, we know that A is the subset of
a compact set of the product topology, then we can assume that xi(n) → yi

in this topology for all i. For all s, limn→∞ xi
s(n) = yi

s. |yi
s| ≤ M for all i, s,

then yi ∈ L∞ for all i. For all ε > 0, choose N > 0 in the theorem 1 and the
lemma 2, such that the sum

∑∞
s=N ui(xi

s(n)) < ε, we have:

∞∑

s=1

ui(xi
s(n)) =

N∑

s=1

πi
su

i(xi
s(n)) +

∞∑

s=N+1

πi
su

i(xi
s(n))

≤
N∑

s=1

πi
su

i(xi
s(n)) + ε

⇒

lim
n→∞

∞∑

s=1

πi
su

i(xi
s(n)) ≤

N∑

s=1

ui(yi
s) + ε

for all N sufficiently large, we have:

lim
n→∞

∞∑

s=1

πi
su

i(xi
s(n)) ≤

∞∑

s=1

πi
su

i(yi
s)

⇒ for all i, U i(yi) ≥ vi ⇒ (v1, v2, ..., vm) ∈ U .

Then we consider the second case. Suppose that for every M > 0 there
exists i and an infinite n such that xi

s(n) > M with an s, without losing the
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generality, we can assume that is true for all n and for an i fixed. Choose M

sufficiently large such that for all i, denote T i
n = {s : |xi

s| < M − 1}, we have∑
s∈T i

n
πi

s > 1
2 With each M > 0, denote the sets Ei

n, Si
n as above. Choose M

sufficiently large such that M > M and Si
n∩T i

n = ∅. πi and πj are equivalents,
so there exist h > 0 such that:

hπi
s ≤ πj

s ≤
1
h

πi
s

We can choose M such that:

uj′(−M) >
uj′(−M)

h2

We consider two cases:
1. ∃ t ∈ Si

n for an infinite n.
2. limn→∞minSi

n = ∞.
Consider the first case. Then lim inf

∑
s∈Si

n
πi

s > 0. Without lost of generality,
we can suppose that there exist

a = lim
n→∞

∑
s∈Si

n
πi

sx
i
s

(m− 1)
∑

s∈T i
n

πi
s

Remarks that 0 < a < 1
2 . Define the sequence (yi(n)):

yi
s(n) = xi

s(n)− xi
s(n)− |es|
m− 1

+ M if s ∈ Si
n

yi
s(n) = xi

s(n) + a if s ∈ T i
n

yi
s(n) = xi

s(n) others cases

yj
s(n) = xj

s(n) +
xj

s(n)− |es|
m− 1

−M if s ∈ Si
n

yj
s(n) = xj

s(n)− a if s ∈ T i
n

yj
s(n) = xj

s(n) others cases

And yk(n) = xk(n) for all k 6= i, j. Easily, we see that
∑m

k=1 yk(n) = e. We are
estimating U i(yi(n)) and U j(xj(n)).

U i(yi(n))− U i(xi(n)) =
∑

s∈T i
n

πi
s[u

i(yi
s(n))− ui(xi

s(n))] +
∑

s∈Si
n

πi
s[u

i(yi
s(n))− ui(xi

s(n))]

≥
∑

s∈T i
n

πi
su

i′(xi
s(n) + a)−

∑

s∈Si
n

πi
su

i′(xi
s(n)− xi

s(n)− |es|
m− 1

+ M)[
xi

s(n)− |es|
m− 1

−M ]

≥ aui′(M)
∑

s∈T i
n

πi
s − ui′(M)

∑

s∈Si
n

πi
s[

xi
s(n)− |es|
m− 1

−M ]

≥ aui′(M)
∑

s∈T i
n

πi
s − ui′(M)

∑

s∈Si
n

πi
s

xi
s

m− 1
+ ui′(M)

∑

s∈Si
n

πi
s[
|es|

m− 1
+ M ] > 0
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with n sufficiently great. So we have the result that lim infn→∞ U i(yi(n) >

lim infn→∞ U i(n) = vi.

U j(yj(n))− U j(xj(n)) =
∑

s∈T i
n

πj
s[u

j(yj
s(n))− uj(xj

s(n))] +
∑

s∈Si
n

πj
s[u

j(yj
s(n))− uj(xj

s(n))]

≥ −a
∑

s∈T i
n

πj
su

j′(xj
s(n)− a) +

∑

s∈Si
n

πi
su

j′(xj
s(n) +

xi
s(n)− |es|
m− 1

−M)[
xi

s(n)− |es|
m− 1

−M ]

≥ −auj′(−M)
∑

s∈T i
n

πj
s + uj′(−M)

∑

s∈Si
n

πj
s

xi
s

m− 1

≥ −auj′(−M)
∑

s∈T i
n

πj
s + uj′(−M)

∑

s∈Si
n

πj
s

xi
s

m− 1

≥ −a

h
uj′(−M)

∑

s∈T i
n

πi
s + huj′(−M)

∑

s∈Si
n

πi
s

xi
s

m− 1

We know that uj′(−M) > uj′(−M)/h2. Then lim infn→∞ U j(yj(n)) > lim infn→ U j(xj(n)) =
vj too.
Now we will show that we can construct a sequence (zk(n)) such that limn→∞ Uk(zk(n)) >

vk. Choose k 6= i, j above. Choose ε > 0 very small such that lim infn→∞ U i(yi(n))−
εui′(−M) > vi. Choose t ∈ T i

n arbitrarily, we define the new sequence (zl(n))
as:

zi
t(n) = yi

t(n)− ε

zk
t (n) = yk

t (n) + ε

zl
s(n) = yl

s(n) in others cases

U i(zi(n))− U i(yi(n)) = πi
t[u

i(yi
t(n))− ui(zi

t(n))]

≥ −πi
tu

i′(yi
t(n)− ε)ε

> −ui′(−M)ε

and then lim infn→∞ ui(zi(n)) > vi.

Uk(zk(n))− Uk(yk(n)) = πk
t [uk(yk

t (n))− uk(zk
t (n))]

≥ πk
t uk′(yk

t (n) + ε)ε

> πk
t uk′(M)ε

then lim infn→ Uk(zk(n)) > vk.
By the induction, we can construct the sequence (zi(n)) such that

∑m
i=1 zi(n) =

e and lim infn→∞ U i(zi(n)) > vi for all i. Then there exist n such that U i(zi(n)) >

vi for all i = 1,m ⇒ (v1, v2, ..., vm) ∈ U .
Now we return to the case limn→∞ inf Si

n = +∞. In this case, we will construct
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a sequence satisfy the properties: lim inf U i(yi(n)) = vi and supn sups |yi
s(n)| <

+∞. If those properties are true for a sequence (xi(n)), we have nothing to do,
in the converse case, there exist i such that for all M , there exist an infinite n

and s s.t xi
s(n) > M . Define i, M , Si

n, as above, remarks that
∑

j 6=i x
j
s(n) =

es − xi
s(n) < 0. Then we have 0 ≤ ∑

j 6=i x
j+
s (n) <

∑
j 6=i x

j−
s (n). Then there

exists a sequence 0 ≤ zi
s(n) ≤ xj−

s (n) such that
∑

j 6=i z
j
s(n) =

∑
j 6=i x

j+
s (n). We

define the sequence (yi(n)):

yi
s(n) = es if s ∈ Si

n

yi
s(n) = xi

s(n) if s /∈ Si
n

yj
s(n) = xj

s(n) + zj
s(n) if s ∈ Si

n

yj
s(n) = xj

s(n) if s /∈ Si
n

We can check that
∑m

k=1 yk(n) = e. We have inf Si
n → +∞, so from the

Lemma 2

|U i(yi(n))− U i(xi(n))| ≤
∑

s≥inf Si
n

πi
s|ui(yi(n))− ui(xi(n))| → 0

and

U j(yj(n))− U j(xj(n)) =
∑

s∈Si
n

πi
s[u

j(yj
s(n))− uj(xj

s(n))]

≥
∑

s∈Si
n

πj
su

j′(xj
s(n) + zj

s(n))zj
s(n)

≥ uj′(0)
∑

s∈Si
n

πj
sz

j
s(n) ≥ 0

So limn→∞ U i(yi(n)) = vi and for n great enough, for all s, we have |yi
s(n)| ≤

M(m − 1)|es|. By induction, in applying the same method, we can construct
our sequence with the properties desired. We have the sequence (yi(n)) ∈ A

satisfy:

lim
n→∞U i(yi(n)) = vi

∃M > 0 such that‖yi(n)‖∞ < M

From Proposition 1, we can suppose that lim yi(n) = yi in the L1. ‖yi(n)‖∞ <

M ⇒ yi ∈ L∞ for all i. Then we have (y1, y2, ..., ym) ∈ A with U i(yi) ≥ vi,
then (v1, v2, ..., vm) ∈ U . U is closed and bounded in Lp, so U is compact.

Now we will drop the condition of Assumption 2, bi = +∞ for all i, we will
prove that with only Assumption 1, there is an quasi-equilibrium in L1.

Theorem 3 With Assumption 1, there is an quasi-equilibrium in L1.
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Proof : We construct the sequence of utilities concave functions ui
N : R → R

such that ui
N (x) = ui(x) with x ∈ [−N, +∞), for all N , ui′

N (−∞) = ∞ and
ui

N ≤ ui
N+1. Remark that ∀x, limN→∞ ui

N (x) = ui(x).
From the Theorem 2 and [2] we know that for N sufficiently large such that
xi

s, e
i
s ∈ [−N, +∞) ∀i, s, there exists an equilibrium general (p∗(N), xi∗(N)).

From the Theorem 1, we know that (xi∗(N)) is in a compact set of the topology
L1, and for all ε > 0, there exist N0 > 0 such that for all N we have:

∑

s≥N0

πi
s|xi∗

s (N)| < ε

⇒ in L1, the sequence (xi∗(N)) converge to (xi∗).
And the price sequence p∗(N) converge to p∗.
Suppose that there exist xi ∈ L1 such that U i(xi) > U i(xi∗). Choose 0 < ε <

U i(xi)− U i(xi∗). There exist M > 0 such that

M∑

s=1

πi
su

i(xi
s) > U i(xi∗) + ε

⇒ lim
N→∞

M∑

s=1

πi
su

i
N (xi

s) > U i(xi∗) + ε

so for N sufficiently large we have

M∑

s=1

πi
su

i
N (xi

s) > U i(xi∗) + ε

We can choose M very large such that
∑

s>M πi
s|xi∗

s (N)| < ε for every N .
Construct the sequence (xi(N)) satisfy: xi

s(N) = xi
s for s ≤ M , xi

s(N) = xi∗
s (N)

if s > M , then we have U i(xi(N)) > U i(xi∗) ⇒ p∗(N).xi(N) > p∗(N).xi∗ for
every N sufficiently large. Let M and N tend to infinity, we have p∗.xi ≥ p∗.xi∗.

3 The model with continuum states

In this section, we will give a proof with a similar result as the section above.
In using a utility function less general than [4], we can have the result without
the assumption H4 in their paper. The set of states we use here as Le-Van and
Truong-Xuan, the set [0, 1], the consumption set is Lp([0, 1]), 1 ≤ p ≤ ∞, each
agent i has an endowment ei(s), utility function under the form

U i(xi) :=
∫ 1

0
ui(xi(s))hi(s)ds

We define A and U as in the section above.
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Assumption 3 For all i, j, ai < bj.

Assumption 4 0 < m <≤ inf [0,1] h
i(s) ≤ sup[0,1] h

i(s) ≤ M < +∞

Assumption 5 For all i, ui is concave and ui′(−∞) = +∞.

Theorem 4 Under the Assumption 4 and the Assumption 5, there exists equi-
librium.

Lemma 3 Assume that xi ∈ Lp, i = 1, m s.t
∑m

i=1 xi(s) =
∑m

i=1 ei(s) for all
s, U i(xi) ≥ U i(ei) for all i, then there exist C > 0 such that for all i:

∫ 1

0
|xi(s)|hi(s)ds < C

Proof : We will using the same method as the section 1. Note di =
∫ 1
0 hi(s)ds.

Choose a > b such that c1 = maxi u
i′(a) < c2 = mini u

i′(b). We have:

∫ 1

0
ui(a)hi(s)ds−

∫ 1

0
ui(xi+(s))hi(s)ds ≥ ui′(a)

∫ 1

0
(a− xi+(s))hi(s)ds

∫ 1

0
ui(b)hi(s)ds−

∫ 1

0
ui(−xi−(s))hi(s)ds ≥ ui′(b)

∫ 1

0
(b + xi−(s))hi(s)ds

⇒

ui′(b)
∫ 1

0
xi−(s)hi(s)ds ≤ [ui(a)− aui′(a)− bui′(b)]di − U i(ei) + max

j
uj′(a)

∫ 1

0
xi+(s)hi(s)ds

⇒

[min
j

uj′(b)−max
j

uj′(a)]
∫ 1

0
xi−(s)hi(s)ds ≤ Ci + max

j
uj′(a)

∫ 1

0
xi(s)hi(s)ds

⇒
∫ 1

0
xi−(s)hi(s)ds <

Ci

minj uj′(b)−maxj uj′(a)
+

maxj uj′(a)
minj uj′(b)−maxj uj′(a)

∫ 1

0
xi(s)hi(s)ds

< C1 + C2

∫ 1

0
xi(s)hi(s)ds

⇒
m∑

i=1

∫ 1

0
xi−(s)hi(s)ds < mC1 + C2

∫ 1

0
ei(s)hi(s)ds =: X

So we have for all i,
∫ 1

0
xi−(s)hi(s)ds < mC1 + C2

∫ 1

0
ei(s)hi(s)ds =: X

13



m∑

i=1

∫ 1

0
xi+(s)hi(s)ds =

∫ 1

0
ei(s)hi(s)ds +

m∑

i=1

∫ 1

0
xi−(s)hi(s)ds < Y

⇒
∫ 1

0
xi+(s)hi(s)ds =

∫ 1

0
ei(s)hi(s)ds +

m∑

i=1

∫ 1

0
xi−(s)hi(s)ds < Y

Then we have
∫ 1

0
|xi(s)|hi(s)ds =

∫ 1

0
xi+(s)hi(s)ds +

∫ 1

0
xi−(s)hi(s)ds < C

Lemma 4 U is bounded.

Proof : U is bounded below, from the definition of U . We will prove that U is
bounded above. Suppose (x1, ..., xm) ∈ A, ui is concave, increasing, so we have:

∫ 1

0
ui(xi(s))hi(s)ds < diui(

∫ 1

0
xi(s)

hi(s)
di

ds) < diui(
C

di
)

Theorem 5 U is closed.

Proof : Suppose that there exists a sequence (x1
n, x2

n, ..., xm
n ) ∈ A, limn→∞ U i(xi

n) =
vi, we have to prove that (v1, v2, ..., vm) ∈ U .
Firstly, we show that (xi

n) is weakly compact in σ(L1, L∞). Suppose the con-
verse, then there exists a sequence Xn ⊂ [0, 1] with the Lebegue measure
µ(Xn) → 0 and lim infn→

∫
Xn
|xi

n(s)|hi(s) > 0 for some i. With each s, there

exists j such that xj
n(s) ≤ −xi

n(s)−e(s)
m−1 . Without loosing the generality, we can

fixe i, and suppose that on the sequence En, xi
n(s) > 0 and xj

n(s) ≤ −xi
n(s)−e(s)

m−1 .
Then we can fixe i, j and a subset En such that:

xj
n(s) ≤ −xi

n(s)− e(s)
m− 1

for all n and all s ∈ En

lim
n→∞

∫

En

xi
n(s)hi(s)ds = ci > 0

With each M very large, we define the set Sn ⊂ En = {s : xi
n(s)−e(s)

m−1 > M}.
Note that limn→∞

∫
Sn

xi
n(s)hi(s)ds = ci. Define the new sequence (yk

n(s)) as
below:

yi
n(s) = xi

n(s)− xi
n(s)− e(s)

m− 1
+ M on Sn

yj
n(s) = xj

n(s) +
xj

n(s) + e(s)
m− 1

−M on Sn

yk
n(s) = xk

n(s) with other k or s

14



Note that
∑

k yk = e. As in the section above, we will estimating Uk(yk)) with
k = i, j.

U i(yi
n)− U i(xi

n) ≥
∫

Sn

ui′(yi
n(s))(yi

n(s)− xi
n(s))hi(s)ds

≥ −
∫

Sn

ui′(M)(
xi

n(s)− e(s)
m− 1

)hi(s)ds

⇒

lim inf
n→∞ U i(yi

n) ≥ vi − ui′(M)ci

m− 1

U j(yj
n)− U j(xj

n) ≥
∫

Sn

uj′(yj
n(s))(yj

n(s)− xj
n(s))hj(s)ds

≥
∫

Sn

uj′(−M)(
xi

n(s)− e(s)
m− 1

)hj(s)ds

⇒

lim inf
n→∞ U j(yj

n) ≥ vj +
vj′(−M)cj

m− 1

and limn→∞ Uk(yk
n) = vk for others k.

So we have constructed the sequence (yk
n) with Uk(yk

n) is bounded below, and if
we let M →∞, our sequence is unbounded above because uj(−∞) = ∞, that
leads us to a contradiction.
Then the sequence (x1

n, x2
n, ..., xm

n ) is σ(L1, L∞) compact.
With each M , denote the set Tn = {s : |xi

n(s)| < M for all i}. We can choose M

sufficiently large such that Lebesgue measure µ(Tn) > 1
2 . Choose M very large

such that for all i, ui(−M)h2 < h1u
i(−M). Define Ei

n = {s : |x
i
n(s)|−e(s)

m−1 > M}.
Firstly, we consider the case that there exists i, lim infn→∞ µ(Ei

n) > 0. Suppose
not, then we can find i such that limn→ µ(Ei

n) = ci > 0. Without loosing the
generality, we can assume xi

n(s) > 0 on Ei
n. Using the same argument as above,

we assume that there exist j and Sn ⊂ Ei
n satisfy:

xj
n(s) ≤ xi

n(s)− e(s)
m− 1

for all s ∈ Sn

lim
n→∞µ(Sn) = c > 0

Construct the sequence (yk
n) as:

yi
n(s) = xi

n(s) + α on Tn

yi
n(s) = xi

n(s)− xi
n(s)− e(s)

m− 1
+ M on Sn

yj
n(s) = xj

n(s)− α on Tn

yj
n(s) = xj

n(s) +
xi

n(s)− e(s)
m− 1

−M on Sn

yk
n(s) = xk

n(s) for others k or s
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Now we estimate U i(yi
n) and U j(yj

n):

U i(yi
n)− U i(xi

n) ≥ α

∫

Tn

ui′(xi
n(s) + α)hi(s)ds−

∫

Sn

ui′(xi
n(s)− xi

n(s)− e(s)
m− 1

+ M)(
xi

n(s)− e(s)
m− 1

+ M)

≥ αui′(M)
∫

Sn

hi(s)ds− ui′(M)
∫

Sn

(
xi

n(s)− es

m− 1
−M)

then we have lim infn→∞ U i(yi
n) > limn→∞ U i(xi

n) = vi.

U j(yj
n)− U j(xj

n) ≥ −α

∫

Tn

uj′(xj
n(s)− α)hi(s)ds +

∫

Sn

uj′(xj
n(s) +

xi
n(s)− e(s)

m− 1
−M)(

xi
n(s)− e(s)

m− 1
−M)

≥ −α

∫

Tn

uj′(−M)h2ds +
∫

Sn

h1u
j′(−M)ds

We have uj′(−M) > h2/h1u
j′(−M), then we have lim inf U j(yj

n) > vj . We have
constructed the sequence (yk

n) such that
∑

k yk
n = e, lim inf Uk(yk

n) ≥ vk with
the strict inequality when k = i, j. Choose ε > 0 such that lim infn→∞ U i(yi

n)−
εui′(−M)h2 > vi. Fix k 6= i, define a new sequence (zl

n) as:

zi
n(s) = yi

n(s)− ε

zk
n(s) = yk

n(s) + ε

zl
n(s) = yl

n(s) in others cases

With the sequence (zl
n), we have:

U i(zi
n)− U i(yi

n) ≥ −ε

∫

Tn

ui′(yi
n(s)− ε)hi(s)ds

≥ −εui′(−M)h2

⇒ lim infn→∞ U i(zi(n)) ≥ lim infn→∞ U i(yi
n)− εui′(−M)h2 > vi.

Uk(zk
n)− Uk(yk

n) ≥ ε

∫

Tn

uk′(yk
n(s) + ε)hk(s)ds

≥ 1
2
εuk′(M)h1 > 0

⇒ lim infn→∞ Uk(zk
n) > vk.

By induction, we can construct the sequence (zk
n) such that for all k, lim infn→∞ Uk(zk

n) >

vk ⇒ there exists n such that for all k, Uk(zk
n) > vk ⇒ (v1, v2, ..., vm) ∈ U .

Now we consider the case for all i, limn→∞ µ(Ei
n) = 0. In this case, we

will construct a sequence satisfy the properties: lim infn→∞ U i(yi
n) = vi and

supn sups |yi
n(s)| < +∞. If those properties are true for a sequence (xi

n), we
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have nothing to do, in the converse case, there exist i such that for all M ,
there exist an infinite n with s ∈ Ei

n, µ(Ei
n) > 0, s.t xi

n(s) > M . Define i, M ,
Sn, as above, remarks that

∑
j 6=i x

j
n(s) = es − xi

n(s) < 0. Then we have 0 ≤∑
j 6=i x

j+
n (s) <

∑
j 6=i x

j−
n (s). Then there exists a sequence 0 ≤ zi

n(s) ≤ xj−
n (s)

such that
∑

j 6=i z
j
n(s) =

∑
j 6=i x

j+
n (s). We define the sequence (yi

n):

yi
n(s) = e(s) if s ∈ Si

n

yi
n(s) = xi

n(s) if s /∈ Si
n

yj
n(s) = xj

n(s) + zj
s(n) if s ∈ Si

n

yj
n(s) = xj

n(s) if s /∈ Si
n

We can check that
∑m

k=1 yk
n = e. We have µ(Si

n) → +∞, so from the Lemma 2

|U i(yi
n)− U i(xi

n)| ≤
∫

Si
n

|ui(yi
n)− ui(xi

n)|hi(s)ds → 0

and

U j(yj
n)− U j(xj

n) =
∫

Si
n

[uj(yj
n(s))− uj(xj

n(s))]hi(s)ds

≥
∫

Si
n

uj′(xj
n(s) + zj

n(s))zj
n(s)hj(s)ds

≥ uj′(0)
∫

Si
n

zj
n(s)hj(s)ds ≥ 0

So limn→∞ U i(yi(n)) = vi and for n great enough, for all s, we have |yi
n(s)| ≤

M(m− 1)|e(s)|. By induction, in applying the same method, we can construct
our sequence with the properties desired. We have the sequence (yi(n)) ∈ A

satisfy:

lim
n→∞U i(yi

n) = vi

∃M > 0 such that‖yi
n‖∞ < M

Then we have the sequence (yi
n) is σ(L∞, L1) compact. We can suppose that

yi
n → yi ∈ L∞. And U i(yi) ≥ vi for all i ⇒ (v1, v2, ..., vm) ∈ U .

Theorem 6 U is compact.

Proof : From Lemma 4 and Theorem 5.
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4 The case of finite countable states

There are m agents indexed by 1, . . . ,m, each agent has a consumption set
Xi ⊂ Rk, a vector of endowment ei and a continuous concave utility function
ui : Rk → R . We first recall some standard concepts of general equilibrium
theory.

The set of individually rational attainable allocations A is defined by

A = {(xi) ∈ (Rk)m |
m∑

i=1

xi =
m∑

i=1

ei and ui(xi) ≥ ui(ei) for all i.}

Definition 1 A pair ((x∗i )
m
i=1, p

∗) ∈ A × Rk is a contingent Arrow - Debreu
equilibrium if

1. for each agent i and xi ∈ Rk, ui(xi) > ui(x∗i ) implies p∗ · xi > p∗ · x∗i ,

2. for each agent i, p∗ · xi∗ = p∗ · ei.

For x ∈ Rk, let

P̂ i(x) = {y ∈ Rs | ui(y) ≥ ui(x)}

and let Ri be its recession cone. Ri is called the set of useful vectors for i and
is defined as

Ri = {w ∈ RS | ui(x + λw) ≥ ui(x), for all λ ≥ 0}

The lineality space of i is defined by

Li = {w ∈ Rl | ui(x + λw) ≥ ui(x), for all λ ∈ R} = Ri ∩ −Ri

Elements in Li will be called useless vectors .
The no unbounded arbitrage condition denoted from now on by NUBA is

introduced by Page (1987).

Definition 2 The economy satisfies the NUBA condition if
∑m

i=1 wi = 0 and
wi ∈ Ri for all i implies wi = 0 for all i.

There exists a weaker condition, called the weak no market arbitrage con-
dition (WNMA), introduced by Hart[1974].

Definition 3 The economy satisfies the WNMA condition if
∑m

i=1 wi = 0 and
wi ∈ Ri for all i implies wi ∈ Li for all i.
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We will prove the propositions that give us the similarity under the NUBA
condition and the WNMA condition. Choose θ sufficiently large such that
‖êi‖ ≤ θ for all i. Define T θ

i := {t ∈ Li | ‖t‖ ≤ θ}. We define the new economy
Ẽθ = (X̃θ

i , ũi, ei) such that X̃θ
i := L⊥i ∩ T θ

i , ũi : Rk → R defined as the restric-
tion of ui on X̃θ

i . Evidently, we have ei ∈ X̃θ
i for all i.

Proposition 2 If ((x̃∗i )
m
i=1, p̃

∗) is an equilibrium of Ẽ then ((x̃∗i )
m
i=1, p̃

∗) is equi-
librium of E.

Proof : We first prove that p∗ ∈ ⋂m
i=1 L⊥i . For each i, there exist εi such that

ui(x̃∗i +εi) > ui(x̃∗i ). ∀ yi ∈ Ti, ui(x̃∗i +εi+yi) > ui(x̃i)⇒ p̃∗.(x̃∗i +εi+yi) > p̃∗.x̃∗i .
Let εi → 0, we have p̃∗.yi ≥ 0. With the similar argument, we found that
p̃∗.(−yi) ≥ 0 ⇒ p̃∗.yi = 0 ∀ yi ∈ T θ

i ⇒ p̃∗ ∈ L⊥i ∀ i.
Observe that ((x̃∗i )

m
i=1, p̃

∗) is equilibrium of Ẽ ⇒ ∑
i x̃
∗
i =

∑
i ei. Now let

ui(xi) > ui(x̃∗i ) ⇒ ui(x⊥i ) > ui(x̃∗i ) ⇒ p̃∗.x⊥i > p̃∗.x̃∗i ⇒ p̃∗.(x⊥i + x̂i) > p̃∗.x̃∗i .
So ((x̃∗i )

m
i=1, p̃

∗) is equilibrium of E .

Proposition 3 If ((x∗i )
m
i=1, p

∗) is an equilibrium of E, then there exists θ > 0
such that ((x∗i )

m
i=1, p

∗) is equilibrium of Ẽθ.

Proof : Choose θ ≥ max{‖x∗i ‖, ‖êi‖}.

Proposition 4 The economy E satisfies Weak No Market Arbitrage condition
if and only if Ẽ satisfies No Unbounded Arbitrage condition.

Proof : Firstly, suppose that E satisfies WNMA condition. In the economy Ẽ ,
Lθ

i = {0}, so Rθ
i = Ri ∩ L⊥ ∀ i. Suppose that wi ∈ Rθ

i such that
∑

i wi = 0 ⇒
wi ∈ Li for all i, ⇒ wi ∈ L⊥i ∩ Li ⇒ wi = 0 ∀ i.
Suppose that Ẽ satisfies NUBA condition. If wi ∈ Ri such that

∑
i wi = 0, then

we have
∑

i w
⊥
i = 0 ⇒ w⊥i = 0 for all i from the NUBA properties ⇒ wi ∈ Li

∀i.

Now we define the notion of no-arbitrage price as in Allouch, Le Van, Page
(2002) and the NAPS notion:

Definition 4 Si =

{
{p ∈ L⊥i | p.w > 0, ∀ w ∈ (Ri ∩ L⊥i )\{0} if Ri\Li 6= ∅}

L⊥i if Ri = Li

}

Definition 5 The economy E satisfies the NAPS condition if ∩iSi 6= ∅.
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Proposition 5 (Page and Wooders, 1996) Assume Li = {0}, ∀ i, then NUBA
⇒ NAPS.

Proof : In [5]

Proposition 6 (Allouch, LeVan and Page (2002))
WNMA ⇒ ∩iSi 6= ∅.

Proof : In [1]
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