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Abstract

We consider the problem of accurate market risk modeling for agricultural
commodity products over heterogeneous investment horizons using copulas
and wavelet methods. Our results indicate that the degree and structure
of the dependence of daily commodity returns on the three market risk fac-
tors (federal funds rate, USD/Euro exchange rate, and world stock market
fluctuations) vary according to the time scale. Changes in the USD/EUR
exchange rate and the stock market index are the dominant risks for agri-
cultural commodity markets. Moreover, the tail dependence on the daily re-
turns of the three market risk factors is also scale-dependent, and frequently
asymmetric. Finally, there is evidence to suggest that the application of the
wavelet-copula model improves the accuracy of VaR estimates, compared to
traditional approaches.

JEL classification: Q14, C52, C58, G11, G17

Keywords: Agricultural commodities, Extreme-value copula, Wavelet, VaR,
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I. Introduction

Fluctuations of prices are among the most important concerns for producers,
consumers and investors acting in agricultural commodity markets, especially
in agriculture-dominated countries. This has become a crucial matter over
the last decade where market prices of agricultural commodities have experi-
enced significant swings and extreme movements as witnessed by the recent
evolution of the FAO Food Price Index (FFPI) in Figure 1.1 The monthly
deflated FFPI reached its first highest peak of 184.7 points in June 2008,
representing respectively 36% and 73% higher than one year and four years
earlier. The index has continued its upwards trend since February 2009 after
a very short period of price decreases, and was 205.7 points in June 2011.
The general surge in the price of all commodity groups is the main driver
of the FFPI index. As an illustration, the dairy, oil & fat, and sugar price
indices rose by more than 94% in real terms between February 2009 and June
2011. All in all, these price variations not only cause serious disruptions to
international commodity markets, but also lead to higher costs for consumers
and inflation threats as well.
It is commonly known that the price movements of agricultural commodi-

ties originate essentially from supply and demand conditions which, in turn,
depend on weather patterns, seasonalities, market states, business cycles,
and geopolitical situations (Lu, 2002; Giot and Laurent, 2003). Furthermore,
while the climate change and natural disasters are largely beyond the control
of market participants, also beyond their predictive abilities are the busi-
ness cycle as well as the speculative behavior of some market participants.
As a result of many such uncertainties, agricultural commodity prices can
vary very substantially: thus hedging against their unfavorable movements
through, for example, futures markets has become a primary and imperative
task. The latter essentially requires an accurate modeling and forecasting of
commodity price patterns.
In the previous literature various types of models have been used to exam-

1The FFPI is a weighted average measure of the monthly change in international prices
of a basket of five food commodity groups (meat, dairy, cereals, oil and sugar), where the
weights are represented by the average export shares of each of the commodity groups for
the period 2002-2004. There are in total 55 commodity quotations considered by FAO
commodity specialists as representing the international prices of food commodities. Note
that in February 2011, the FAO revised the composition of the meat price index, which
consequently resulted in adjustments to the historical values of the FFPI.

2



ine dynamical changes in agricultural commodity prices. Tomek and Myers
(1993) review a variety of frequently-used models that fall into the fami-
lies of structural models and time-series models (e.g., linear structural mod-
eling, stochastic trends analysis, cointegration, vector autoregressions and
time-varying volatility models), and come to the conclusion that no single
approach is the best, but research on commodity price analysis must have
a clear statement of problems, an in-depth understanding of econometric
models, and accuracy tests. Recent contributions to this topic almost all
rely on time-series modeling techniques (Zanias, 1999; Chatrath et al., 2002;
Giot and Laurent, 2003; Roache and Rossi, 2010; Gohin and Chantret, 2010;
Nazlioglu, 2011; Natanelov et al., 2011). For example, Zanias (1999) tests
the convergence of agricultural price series towards the law of one price by
modifying the co-integration analysis to take seasonal components into ac-
count. Using data for the soft wheat market of five European Union member
states, the author obtains mixed results because some markets turn out to
be integrated whereas the integration hypothesis cannot be confirmed for
the others. The study by Chatrath et al. (2002) shows that ARCH-type
models, accommodating seasonality and contract-maturity effects, explain
much of the nonlinearity contained in the futures prices of four important
agricultural commodities. Giot and Laurent (2003) use ARCH-type VaR
(Value-at-Risk) models to address the issue of market risk modeling in com-
modity markets including cocoa futures contracts, and find that the skewed
Student APARCH model performs best in all cases. More recently, through
the use of VECM and threshold cointegration, Natanelov et al. (2011) pro-
vide evidence that the co-movement between futures prices of crude oil, gold
and agricultural commodities varies over time and some economic policies
may change their nexus.
The above literature review shows that empirical models used in previous

studies for modeling agricultural commodity price movements are exposed
to a common pitfall in that they do not account for the potential outliers
or irregular extreme values, which are likely to exist. The computation of
VaR forecasts (market risk) reported in Giot and Laurent (2003) for exam-
ple could, ultimately, be biased owing to the ignorance of the tail behavior
of commodity-price distributions. Moreover, commodity prices may be char-
acterized by multiscale structures, each occurring on a different time scale.
This basic idea here is that the many types of market operators with hetero-
geneous risk preferences, capital budgeting constraints, information access,
expectations, and risk perceptions may lead to their differential sensitivity to
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different time scales (e.g., hourly, daily, weekly or monthly). It then follows
that commodity prices behave differently over different time scales, and there
is a need to implement risk management strategies adapted to different time
horizons.
In this paper we develop a wavelet-based copula framework to assess

market risk for agricultural commodity products, related to fluctuations in
the global stock, money, and foreign exchange markets. The combination of
wavelet and extreme-value copulas allows us to explore not only the nature
and the intensity, but also the asymmetry of dependence structure over dif-
ferent time scales. Our approach is also suitable for capturing the observed
characteristics of commodity prices such as time-varying volatility and abrupt
jumps (Deaton and Laroque, 1992; Myers, 1992), and skewed distributions
and nonlinear price dynamics (Yang and Brorsen, 1992). In recent years,
wavelet methods and copulas have separately received much attention from
finance practitioners and researchers and they have been found to be useful
in the study of the relationships between financial variables (see, e.g., Kim
and In, 2005; Lada and Wilson, 2006; Durai and Bhaduri, 2009 for wavelet
applications; and Jondeau and Rockinger, 2006; Chan and Kroese, 2010; and
Aloui et al., 2011 for copula applications).
Using daily data for eight major agricultural commodities, federal funds

effective rate, USD/EUR exchange rate, and MSCI world stock market in-
dex, we find that the degree and the structure of dependence of commodity
returns with the three market risk factors vary according to time scales. Fluc-
tuations in the USD/EUR exchange rate and the stock market index are the
dominant risks for agricultural commodity markets. Market risks have neg-
ative effects on commodity returns and appear to be particularly high over
the period from two to four business days (i.e., the shortest wavelet periodic-
ity component) as indicated by the copula dependence parameters. For the
longer periodicity component, this dependence parameter becomes positive
for most cases, but smaller in size. Moreover, the interdependence during
market extreme (positive or negative) movements is scale-dependent, and
more often than not asymmetric. Our results also indicate that the proposed
wavelet-copula model leads to a substantial improvement in the accuracy of
VaR measures, as compared to traditional VaR estimation approaches.
The rest of this paper is organized as follows. Section 2 introduces the

empirical framework and estimation procedure. Section 3 describes the data
used and their statistical properties. Section 4 report the obtained results,
while some concluding remarks are provided in Section 5.
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II. Empirical framework

In this section we introduce an integrated framework for examining the mar-
ket risk of the main agricultural commodity products. First, the returns
series are filtered using wavelet analysis. This method, recently applied to
financial time series, decomposes a given returns series in orthogonal compo-
nents, as in the Fourier approach, with respect to scales (time components)
instead of frequencies. We then fit the suitable multivariate copula functions
to different time components of various returns series in order to investi-
gate their dependence structure at different time scales. We finally show how
these results can be used to compute the Value-at-Risk (VaR) for agricul-
tural commodity markets, conditionally on their dependence with changes in
global equity market, US federal funds rate, and the dollar/euro exchange
rate. In addition to some goodness-of-fit tests which aim to check the robust-
ness of the results, we also distinguish between in-sample and out-of-sample
periods so that we can compare the predictive power of our wavelet-based
copula VaR with a standard VaR model.

Wavelet method for returns decomposition
Wavelet transform analysis has been found to be particularly useful for ex-
amining signals in both the time and frequency domains. Two statistical
tools that are essential to our purpose include the maximal overlap discrete
wavelet transform (MODWT) and multiresolution analysis (MRA).2

In wavelet analysis, any function f(t) in L2(R) can be decomposed into
components associated with different scales of resolution. More explicitly,
the wavelet representation of the function f(t) is given by

f(t) =
∑
k

SJ,kφJ,k(t)+
∑
k

dJ,kψJ,k(t)+
∑
k

dJ−1,kψJ−1,k(t)+...+
∑
k

d1,kψ1,k(t)

(1)
where φ is the scaling function, also known as the father wavelet, and ψ

is the wavelet function, also known as the mother wavelet, φj,k and ψj,k are a
scaling and translation of φ and ψ, and SJ,k and dJ,k, respectively, are called
the smooth coeffi cients and the detailed coeffi cients.

2For a more complete review of the theory and the use of wavelets, see Percival and
Walden (2000) and Gençay et al. (2002).
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The MODWT filter is obtained directly from the discrete wavelet trans-
form (DWT) filter. Let φj,k and ψj,k denote the DWT scaling and wavelet
filters, with k = 1, ..., K being the length of the filter and j the level of
decomposition, the MODWT scaling φ̃j,k and wavelet ψ̃j,k filters are given
by

φ̃j,k =
φj,k
2j/2

and ψ̃j,k =
ψj,k
2j/2

(2)

For a time series X with arbitrary sample size (N), the jth level MODWT
scaling (Ṽj) and wavelet (W̃j) coeffi cients are defined by

Ṽj,t =

Kj−1∑
k=0

φ̃j,kXt−k mod N and W̃j,t =

Kj−1∑
k=0

ψ̃j,kXt−k mod N (3)

Note that the MODWT, which is a non-decimated form of the discrete
wavelet transform (DWT), applies high-pass and low-pass filters to the input
signal at each level. In contrast to the DWT, the output signal is not sub-
sampled (not decimated) and the filters are upsampled at each level. On the
other hand, while the DWT restricts the sample size N to an integer multiple
of 2j0 , the MODWT is well defined for all sample sizes N . Furthermore, the
MRA obtained with the MODWT is "shift invariant", i.e., shifting the time
series by any amount will circularly shift each detailed and smooth coeffi -
cients by an equivalent amount. Overall, the decomposition of a time series
into different components associated with different time scales would permit
of obtaining a better description and understanding of the data generating
process as well as the underlying dynamic market mechanisms.

Copula functions
Copulas are functions that link multivariate distributions to their univariate
marginal functions. A good introduction to copula models and their funda-
mental properties can be found in Joe (1997) and Nelsen (1999). Formally,
we refer to the following definition

Definition 1. A d-dimensional copula is a multivariate distribution function
C with standard uniform marginal distributions.

Theorem 2. Sklar’s theorem
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Let X1, ..., Xd be random variables with marginal distributions F1, ..., Fd
and joint distribution H, then there exists a copula C: [0, 1]d → [0, 1] such
that

H(x1, ..., xd) = C(F1(x1), ..., Fd(xd)) (4)

Conversely, if C is a copula and F1, ..., Fd are distribution functions, then
the function H defined above is a joint distribution with margins F1, ..., Fd.

Another important concept used in this work is that of a survival copula.
Given a copula C, the survival copula of C(u, v) is CS(u, v) = u + v − 1 +
C(1 − u, 1 − v). The density of the survival copula is essentially a mirror
image of the density of the original copula, i.e., cS(u, v) = c(1− u, 1− v).
The copula models we consider here allow us to investigate both symmet-

ric and asymmetric structures of dependence between variables.

- Normal copula: The bivariate normal (N) copula function is defined by

C(u, v) = ϕρ(ϕ
−1(u), ϕ−1(v)) (5)

where ϕρ is the standard bivariate normal distribution with linear corre-
lation coeffi cient ρ, and ϕ represents the univariate standard normal distrib-
ution function. The normal copula can be rewritten as

C(u, v) =

ϕ−1(u)∫
−∞

ϕ−1(v)∫
−∞

1

2π
√
1− ρ2

exp(−s
2 − 2ρst+ t2

2(1− ρ2) )dsdt (6)

−1 ≤ ρ ≤ 1, s = ϕ−1(u), t = ϕ−1(v)

- Frank copula: The Frank (F) copula, which belongs to the Archimedean
family, is given by

C(u, v) = −1
θ
ln(1+

(exp(−θu)− 1)(exp(−θv)− 1)
exp(−θ)− 1 ), θ ∈ (−∞,∞)\{0}

(7)

- Clayton copula: The Clayton (C) copula is also an Archimedean copula
and is given by
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C(u, v) = (u−θ + v−θ − 1)−1/θ, θ ∈ [−1,∞)\{0} (8)

- Survival Clayton copula: The Survival Clayton (SC) copula is derived from
the Clayton copula

C(u, v) = u+ v − 1 + ((1− u)−θ + (1− v)−θ − 1)−1/θ, θ ∈ [−1,∞)\{0} (9)

- Gumbel copula: The Gumbel copula (G) is an extreme-value Archimedean
copula, given by

C(u, v) = exp{−[(− lnu)θ + (− ln v)θ]1/θ}, θ ∈ (1,+∞) (10)

- Survival Gumbel copula: The Survival Gumbel (SG) copula is the mirror
image of the Gumbel copula. It is given by

C(u, v) = u+ v−1+exp{−[(− ln(1−u))θ+(− ln(1− v))θ]1/θ}, θ ∈ (1,+∞)
(11)

- Tawn Copula: The Tawn (T) copula (or the mixed model of the Gumbel
and independence copulas) is an extreme value copula given by

C(u, v) = uv exp{−θ lnu ln v
ln(uv)

}, 0 ≤ θ ≤ 1 (12)

The elliptical copulas are the most popular in the finance literature due
to their ease of use. The normal and the Student’s t copulas fall into this
family since they are based on an elliptically contoured distribution such as
multivariate Gaussian or t distributions. The Gaussian copula is symmetric
and has no tail dependence while the Student’s t copula can capture extreme
dependence between variables. For the normal, Student’s t and Frank cop-
ulas, θ = 0 or θ → 0 leads to independence, while θ > 0 and θ < 0 lead to
positive and negative dependence, respectively.
Unlike elliptical copulas, the Archimedean copulas such as the Gumbel

and Clayton copulas are not derived from multivariate distribution functions
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and can be used to capture asymmetry between lower and upper tail depen-
dences. The Clayton copula exhibits greater dependence in the negative tail
than in the positive, whereas the Gumbel copula exhibits greater dependence
in the upper tail than in the lower tail. For the Clayton copula, θ → 0 leads
to independence, while θ →∞ leads to perfect positive dependence. For the
Gumbel copula, θ = 1 and θ → ∞ imply independence and perfect positive
dependence, respectively. All Archimedean copulas are asymmetric, except
for the Frank copula which enables capturing the full range of dependence
for marginals exposed to weak tail dependence.
In order to fit copulas to our data, we use a semiparametric two-step

estimation method, namely the Canonical Maximum Likelihood (Cherubini
et al., 2007). This method first estimates the marginals FX and GY non
parametrically via their empirical cumulative distribution functions (ECDF)
F̂X and ĜY , defined by

F̂X(x) =
1

n

n∑
i=1

1{Xi < x} and ĜY (y) =
1

n

n∑
i=1

1{Yi < y} (13)

In the implementation, F̂X and ĜY are rescaled by n
n+1

to ensure that
the first order condition of the log-likelihood function for the joint distribu-
tion is well defined for all finite n. Then the observations are transformed
into uniform variates using the ECDF of each marginal distribution and the
unknown parameter θ of the copula is estimated by

θ̂CML = argmax
θ

n∑
i=1

ln c(F̂X(xi), F̂Y (yi); θ) (14)

Under suitable regularity conditions, the CML estimator θ̂CML is con-
sistent, asymptotically normal, and fully effi cient at independence. Further
details can be found in Genest et al. (1995). Moreover, before computing
the ECDFs, we filter the returns with a standard GARCH(1,1) model to
remove any serial dependence of the returns data as well as to capture styl-
ized effects of their conditional volatility (i.e., persistence, clustering, and
time-variations). After that, the CML estimation approach can be properly
used.
To select the most appropriate copula model, we apply a goodness-of-fit

test that investigates the distance between the estimated and the empirical
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copulas (Genest et al., 2009). The empirical copula Cn, which is the most fa-
mous and easiest nonparametric estimator for the copula of a random vector,
basically represents an observed frequency and is obtained from the empir-
ical margins. The distance between the said copulas is evaluated using a
Cramér-von Mises statistic:

Sn = n

∫
{Cn(u, v)− Cθn(u, v)}2dCn(u, v) (15)

Large values of Sn lead to the rejection of the null hypothesis that the
estimated copula is closest to the empirical copula. In practice, we require
knowledge about the limiting distribution of Sn which depends on the un-
known parameter value θ. To find the p-values associated with the test
statistic we use a multiplier approach as described in Kojadinovic and Yan
(2010).

III. Data

Our sample data consist of daily closing spot prices for eight agricultural
commodities widely traded in the Chicago Board of Trade (CBOT) and New
York Board of Trade (NYBOT). The latter was renamed the Intercontinen-
tal Exchange (ICE) Futures US after September of 2007. Grain and oilseeds
commodities include soft white winter wheat, live cattle, yellow soybeans,
yellow corn, and soybean oil. Soft commodities include cocoa, cotton, and
sugar. Commodity specifications are presented in Table 1. All data are ex-
pressed in US dollars, and obtained from Bloomberg and Reuters databases.
The three market risk factors considered in this paper are the federal funds

effective rate (FFE.rate), the USD/EUR exchange rate (i.e., the amount
of US dollars per Euro) and the world stock market index constructed by
Morgan Stanley Capital International (MSCI). These variables, besides un-
controlled factors such as climate conditions and natural disasters, are of
paramount importance for gauging the market risk faced by operators in
agricultural markets since they directly affect production and investment de-
cisions as well as international trade transactions. Collected daily, they are
viewed as external shocks to agricultural price dynamics from changes in
monetary policy, global trade, and stock market cycles.
The sample period is from October 3, 2003 to August 31, 2010, yielding

1789 observations. Returns series are computed by using the difference in
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the logarithm of the two consecutive prices, except for the interest rate se-
ries whose changes are computed as the difference between two consecutive
interest rates. Table 2 presents the summary statistics, while a graphical il-
lustration of the commodity data and returns on market risk factors is shown
in Figure 2 and Figure 3. Average daily returns for commodities range from
3% (Live cattle) to 7.2% (Sugar). Changes in federal funds rate are negative
on average, which essentially reflects the decreasing trend of the funds rates
during the course of the global financial crisis 2007-2009. We also observe
that the US dollar appreciates against the euro over the study period, in
view of the negative average returns on USD/EUR exchange rate. On the
other hand, all commodity returns series exhibit high daily volatility in terms
of standard deviations. All the series also appear to depart from normality
as indicated by significant skewness and kurtosis coeffi cients. The Jarque-
Bera statistics (J-B) confirm the fact that all the series are non-normally
distributed. The Ljung-Box statistics for the 12-order autocorrelation are
significant for six returns series. The results of the Ljung-Box test applied to
the squared returns and the ARCH LM test give strong evidence of condi-
tional heteroscedasticity in the returns series, which supports our decision to
use a GARCH-type model to filter returns components obtained from wavelet
decomposition. Finally, the results of common unit root tests (Dickey-Fuller
and Phillips-Perron), not reported here to conserve space, show that all the
series are stationary and thus suitable for further analysis.

IV. Results and discussions

Time scales effects from wavelet decomposition
The wavelet approach described in the previous section is applied to decom-
pose the returns on a scale-by-scale basis. Its use is motivated by the fact that
commodity returns series seem to have both time and frequency domain rep-
resentations, mainly due to the heterogeneity of market participants having
different expectations, risk preference levels and investment horizons. For
example, short-term investors are naturally more interested in short-term
fluctuations of the prices, whereas long-term investors keep a close watch
on long-run price movements. Typically, the evaluation of the time-varying
comovement at different frequencies between commoditity returns and mar-
ket risk factors is possible and very useful for investors to understand the
changes in their market risk exposure over time across frequencies. Similar
to previous studies in the related literature (Percival and Walden, 2000), we
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Table 2
Statistical properties of daily returns: 2003-2010

Panel A
Mean Std Dev Skewness Excess kurtosis

Wheat 0.030 1.137 -0.389 8.334
Live cattle 0.003 1.456 0.121 5.281
Soybeans 0.022 1.841 -0.496 1.909
Cotton 0.018 1.947 -0.079 1.531
Soybean oil 0.018 1.816 0.052 1.819
Cocoa 0.024 4.236 3.733 47.651
Sugar 0.072 1.938 -0.116 1.360
Corn 0.036 2.089 -0.204 2.133
FFE. rate -0.436e-03 0.102 -0.294 35.867
Euro/USD rate -0.005 0.646 0.182 3.905
MSCI index 0.007 1.140 -0.455 10.376
Panel B

Q(12) Q2(12) J-B ARCH(12)
Wheat 207.907** 597.855** 5186.852** 265.966**
Live cattle 138.994** 278.086** 2068.003** 192.729**
Soybeans 17.106 432.173** 342.341** 184.778**
Cotton 10.337 413.807** 174.730** 185.771**
Soybean oil 14.273 409.485** 245.060** 187.801**
Cocoa 34.951 91.308** 172341.285** 69.308**
Sugar 23.094* 90.561** 140.451** 68.761**
Corn 16.249 409.795** 348.506** 172.120**
FFE. rate 275.235** 1615.917** 95311.86** 641.890**
Euro/USD rate 19.077† 307.088** 1137.702** 174.091**
MSCI index 48.520** 2383.582** 8032.425** 650.851**

Notes: The table displays summary statistics for the returns data over the study period

from October 3, 2003 through August 31, 2010. J-B, Q(12) and Q2(12) are the empirical

statistics of the Jarque-Bera test for normality and Ljung-Box test for serial correlation in

returns and squared returns with 12 lags. ARCH(12) is the empirical statistics of the LM

test for conditional heteroscedasticity applied to 12 lags. *, and ** denote the rejection of

the null hypothesis of no autocorrelation, normality and homoscedasticity at the 5% and

1% levels, respectively. † indicates the rejection of these null hypothesis at the 10% level.
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use the Daubechies least asymmetric wavelet filter of level 8 (LA8) with pe-
riodic boundary conditions in the MODWT multiresolution decomposition.
Each of the 11 time series was decomposed into four different periodicity
series ranging from short to long-run periodicity: D1, D2, D3 and D4. These
wavelet filter coeffi cients correspond respectively to 2-4, 4-8, 8-16 and 16-32
days period since we use daily data and set the number of scales J to be four.
Additionally, the vector S4 captures the trend of the original returns series.
The results from the application of MODWT multiresolution decompo-

sition to each time series, are presented in Figures 4 and 5. All the compu-
tations were performed using the S +Wavelets module running under the
S − PLUS statistical computing environment. In each chart of Figures 4
and 5, we show the plot of the original series (sum), the scaling coeffi cient
vector (S4) that captures the trend of the series, and the wavelet coeffi cient
vectors from the small-scale component D1 (high frequency) to the high-scale
component D4 (low frequency).

Wavelet variance and correlation analyses
Figures 6 and 7 show the MODWT-based wavelet variance estimates of the
commodities and market risk returns as well as their corresponding 95% con-
fidence intervals, represented by the upper (U) and lower (L) bounds. The
associated graphs indicate that there is a general and common trend of de-
crease in the estimated wavelet variances as the scale increases. Investors
in agricultural commodity markets with very short-term investment horizons
are thus confronted with high risks. Commodities returns also exhibit sig-
nificant differences in volatility over different scales. In particular, Cocoa
returns experienced the highest level of volatility, while Wheat and Cattle
have less volatile returns.
The estimated multiscale correlation coeffi cients between commodities re-

turns and market risk factors are presented in Figures 8, 9 and 10. A very
low degree of wavelet correlation is observed between commodities and the
FFE rate at all scales considered. The expected effects on commodity prices
of changes in policy interest rate are thus small. The wavelet correlation co-
effi cients with the USD/EUR exchange rate and world stock market decrease
significantly as the time scale increases. The most significant relationships
are typically detected at the smallest scale, that is for the component D1.
More precisely, the highest correlation, of about 0.30, is found between the
MSCI world market index and Soybean oil, followed by the Corn-MSCI pair
(0.27). Overall, the results suggest that commodities returns have higher
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correlations with the USD/EUR exchange rate and the MSCI world market
index than with the FFE rate, and that the returns linkages are essentially
stronger at the smallest scale.

Dependence structure through copula functions
Copulas have recently become a very promising tool to assess the depen-
dence between various time series in a flexible way. Combined with wavelets,
they allow us to investigate both the strength, the structure and the time-
variations of interdependence across different frequencies. Table 3 reports
the results from the application of copula functions to each bivariate system
of wavelet decomposed commodity returns and market risks. For each pair,
the best copula model which is selected by the goodness-of-fit test (Genest
et al., 2009) as well as its associated dependence parameter are presented. In
Tables 4 and 5, we report the values of the upper and lower tail dependence
coeffi cients, obtained from the best-fitting copula model. Two important
findings emerge from the variety of patterns displayed in Tables 4 and 5:
i) the degree and the structure of dependence are not constant across time
scales; and ii) the interdependence during market extreme (positive or neg-
ative) movements is asymmetric and scale-dependent.
The results for the original series point to the survival Gumbel copula as

the best-fitting model in five cases: Cattle-USD/EUR, Soybeans-USD/EUR,
Cotton-MSCI, Sugar-USD/EUR and Sugar-MSCI. Notice here that the sur-
vival Gumbel copula highlights a strong relationship for the mentioned pairs,
even for the negative values of the density function in the lower left corner.
The Student’s t copula gives the best fit for three pairs: Soybeans-MSCI,
Cotton-USD/EUR and Soybean oil-USD/EUR. The Tawn copula is the best
model only for Cattle-MSCI pair. For the remaining pairs, the fitted copula
models are rejected at the 5% significance level. In particular, returns are
positively linked whenever copula models are relevant. It turns out that rising
commodity prices are typically associated with increases in the Fed interest
rate (i.e., contractionary monetary policy), world stock market returns, and
USD/EUR exchange rate (i.e., depreciation of the US dollar relative to the
Euro). The tail dependence coeffi cients show that for a total of 24 pairs,
we find extreme dependence during periods of large joint gains and losses
for three pairs, extremely negative dependence for five pairs, and extremely
positive dependence for only one pair (Tables 4 and 5). The Soybean oil-
USD/EUR and the Soybeans-USD/EUR pairs show the highest degree of
tail dependence during bull and bear markets, respectively.
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Table 4
Estimates of the upper tail dependence coeffi cients over five time scales

Pairs Sum D1 D2 D3 D4
Wheat-FFE.rate - 0 0 0 0
Wheat-USD/EUR - 0.123 0.003 0 0
Wheat-MSCI - - 0.130 0.104 0
Cattle-FFE.rate - 0 0 0 0
Cattle-USD/EUR 0 0 0 0 0.032
Cattle-MSCI 0.025 0 0 0 0
Soybeans-FFE.rate - 0 0 0.085 -
Soybeans-USD/EUR 0 0 0 0.029 0
Soybeans-MSCI 0.052 - 0.042 0.017 0
Cotton-FFE.rate - 0 0 0 0
Cotton-USD/EUR 0.018 0.115 0.033 0.010 -
Cotton-MSCI 0 0 0.062 0 -
Soybean oil-FFE.rate - 0 0 0.120 -
Soybean oil-USD/EUR 0.087 0.065 0.029 0.033 0
Soybean oil-MSCI - - - - -
Cocoa-FFE.rate - 0 0 0 -
Cocoa-USD/EUR - 0 0 0 -
Cocoa-MSCI - 0 - - -
Sugar-FFE.rate - 0 0 0 -
Sugar-USD/EUR 0 0 0 0.003 0.007
Sugar-MSCI 0 0.001 0.107 - -
Corn-FFE.rate - 0 0 0 −
Corn-USD/EUR - 0.123 0 0 -
Corn-MSCI - - 0.034 0.004 0.053

Notes: This table presents the upper tail dependence parameter’s estimates for each pair

over different time scales.
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Table 5
Estimates of the lower tail dependence coeffi cients over five time scales

Pairs Sum D1 D2 D3 D4
Wheat-FFE.rate - 0 0 0 0
Wheat-USD/EUR - 0 0.003 0 0
Wheat-MSCI - - 0 0.104 0
Cattle-FFE.rate - 0 0 0 0
Cattle-USD/EUR 0.022 0 0 0 0
Cattle-MSCI 0 0 0 0 0
Soybeans-FFE.rate - 0 0 0 -
Soybeans-USD/EUR 0.162 0 0.137 0.029 0
Soybeans-MSCI 0.052 - 0.042 0.017 0
Cotton-FFE.rate - 0 0 0 0
Cotton-USD/EUR 0.018 0 0.033 0.010 -
Cotton-MSCI 0.160 0.139 0.062 0.073 -
Soybean oil-FFE.rate - 0 0 0 -
Soybean oil-USD/EUR 0.087 0.065 0.029 0.033 0
Soybean oil-MSCI - - - - -
Cocoa-FFE.rate - 0 0 0 -
Cocoa-USD/EUR - 0 0 0 -
Cocoa-MSCI - 0 - - -
Sugar-FFE.rate - 0 0 0 -
Sugar-USD/EUR 0.094 0 0.082 0.003 0.007
Sugar-MSCI 0.096 0.001 0 - -
Corn-FFE.rate - 0 0 0 −
Corn-USD/EUR - 0 0 0 -
Corn-MSCI - - 0.034 0.004 0.053

Notes: This table presents the lower tail dependence parameter’s estimates for each pair

over different time scales.
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For the shortest periodicity component D1, fitted copula models are re-
jected only for four pairs. The class of Archimedean copulas is relevant in
12 out of the 20 remaining cases, while symmetric copulas (normal and Stu-
dent’s t) are selected as the best models in six cases. The Tawn copula is
retained in two cases. These findings are consistent with the view that D1-
component commodity returns tend to be asymmetrically linked with market
risk factors. We observe a negative relationship between the FFE rate and
the following commodities: Wheat, Soybeans, Cotton, Soybean-oil, Cocoa,
and Corn. The dependence parameter is also found to be negative for three
other pairs: Cattle-USD/EUR, Cocoa-USD/EUR and Cocoa-MSCI. A close
look at the tail dependence coeffi cients indicates that two pairs are mutu-
ally dependent in extremes on both positive and negative levels, three pairs
during bull markets, and one pair during bear markets. The Cotton-MSCI
pair has the strongest tail dependence during bear markets, while the Wheat-
USD/EUR and Corn-USD/EUR pairs show the highest degree of dependence
during bull market.
As to the medium periodicity components D2 and D3, we observe a net

improvement of symmetric copulas in dependence modeling since they give
the best fit in 11 and 13 cases, respectively. With respect to the component
D2, the dependence is still negative for the following pairs: Corn-FFE.rate,
Cotton-FFE.rate, Soybeans-FFE.rate, Soybean oil-FFE.rate, Wheat-FFE.rate,
and Cocoa-USD/EUR. Other negative links are found and include Cattle-
MSCI and Sugar-FFE.rate. The Wheat-MSCI and the Soybeans-USD/EUR
pairs show the highest degree of dependence at extreme positive and neg-
ative levels, respectively. The D3-component dependence is positive for all
pairs, except for Cocoa-FFE.rate, Cotton-FFE.rate, Wheat-FFE.rate, and
Cattle-USD/EUR. The highest degree of tail dependence during periods of
large joint losses and gains is found for the Wheat-MSCI and Soybean oil-
FFE.rate pairs.
Twelve copula models are rejected at the 5% level for the longer period-

icity component D4, and among the relevant copula models, the Student’s t
and normal copulas provide the best fit for four pairs. The dependence para-
meter is positive for all pairs, except for the Cattle-FFE.rate pair. A stronger
tail dependence is observed for the pair Corn-MSCI at extreme negative and
positive scenarios.
Overall, asymmetric copula functions appear to be best at modeling the

dependence between commodity returns and market risk factors over the
shortest and the longer periodicity components, while the role of Student’s t
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and normal copulas increases for medium periodicity components.

Wavelet-based copula models and accuracy of VaR estimation
Value-at-Risk is one of the most popular measures for market risk assess-
ment. It is commonly defined by the maximum loss in a portfolio’s value
with a given probabiliy over a given time period. We now show how the pro-
posed wavelet-copula approach can be used to improve the accuracy of VaR
measurement. To this end, we compute the VaR of a representative equally-
weighted portfolio, composed of the Soybeans and USD/EUR exchange rate.
A backtesting procedure for the original returns series and for each periodic-
ity components can be then implemented to assess the accuracy of the VaR
estimates.
Methodologically, we proceed as follows. First, we estimate the whole

model (i.e., copula-GARCH for raw series and wavelet-copula-GARCH for
the decomposed series) using data only up to time t0. We then simulate
innovations from the copula and transform them into standardized residuals
by inverting the marginal CDF of each series. Finally, we calculate the
forecasting returns by using the GARCH-volatility and conditional mean
terms, and compute the value of the considered portfolio. This procedure can
be repeated until the last observation and we compare the estimated VaR
with the actual next-day value change of the portfolio. The whole process is
repeated only once in every 50 observations owing to the computational cost
of this procedure and because we did not expect to see large modifications
in the estimated model when only a fraction of the observations is modified.
However, at each new observation the VaR estimates are modified because
of changes in the GARCH volatility and the conditional mean.
We started by estimating the model using the first half of the data. Then,

we simulate 3000 values of the standardized residuals, estimate the VaR and
count the number of losses that exceeds the estimated VaR values. We also
estimate the VaR using two other approaches: the variance—covariance (also
known as analytical) and the historical simulation methods. While the first
approach estimates the VaR assuming that the joint distribution of the port-
folio returns is normal, the second measures the risk by means of ordered
Loss—Profit observations. In the variance—covariance and historical simula-
tion methods, the model parameters were updated for every observation.
The results for the backtesting test are reported in Table 6. Note that a
model is said to be best suited for calculating VaR is the one with the num-
ber of exceedances closest to the expected number of exceedances. We can
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see that wavelet-copula VaR models outperform both alternative approaches
(analytical and historical simulation methods) for the original data and for
each periodicity component at the conventional confidence levels. It provides
less accurate VaR estimates only for the longest periodicity component D4
at the 90% and 95% confidence levels. Overall, these findings confirm the
usefulness of wavelet-copula models in forecasting the market risk associated
with investments in commodity markets.

V. Conclusion

Market risk forecasts for agricultural commodity prices are intended to be
useful for farmers, governments, and agribusiness industries. They are indeed
inputs for risk diversification and hedging strategies as well as regulation
policies. In this paper, we propose a wavelet-copula framework to investigate
the dependence structure of agricultural commodity prices with respect to
three market risk factors: the federal funds effective rate, the USD/EUR
exchange rate, and changes in the MSCI world stock market index. This
framework allows us to capture not only the nature, but also the intensity
of multiscale dependence structures as well as the possibility of asymmetric
tail dependence. Applying this to eight major agricultural commodities, our
results provide evidence that the intensity and structure of the dependence
of commodity returns on the three market risk factors exhibit time-varying
patterns over different time scales. Dynamic changes in commodity returns
are the most sensitive to the movements of USD/EUR exchange rate and
stock market index. The market risks have negative effects on commodity
returns and appear to be particularly high over the period from two to four
business days, but essentially positive effects for longer investment horizons.
It then turns out that rising commodity prices are likely to be associated with
increases in the Fed interest rate (i.e., contractionary monetary policy), world
stock market returns, and USD/EUR exchange rate (i.e., depreciation of the
US dollar relative to the Euro). Furthermore, the interdependence during
market extreme (positive or negative) movements is scale-dependent, and
more often than not asymmetric. We finally find that the proposed wavelet-
copula model leads to more accurate VaR forecasts than the traditional VaR
approaches.
Overall, the findings presented in this paper offer insights into the time-

scale behavior of agricultural commodities in relation with the three major
market risks. Adapting the investment strategies or regulation policies to
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time scale relationships is therefore desirable in order to avoid significant
exposure to market risk.
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Figure 2. Time-variations of daily returns on agricultural commodities
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Figure 4. MODWT multiresolution decomposition of Wheat, Cattle,
Soybeans, Cotton, Soybean oil and Cocoa returns series.
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Figure 5. MODWT multiresolution decomposition of Sugar, Corn,
FFE.rate, USD/Euro and MSCI returns series.
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Figure 6. Estimated wavelet variance for Wheat, Cattle, Soybeans, Cotton,
Soybean oil and Cocoa returns series.
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Figure 7. Estimated wavelet variance for Sugar, Corn, FFE.rate,
USD/EUR, MSCI and all commodities returns series.
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Figure 8. Estimated wavelet correlation between commodities returns and
FFE rate
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Figure 9. Estimated wavelet correlation between commodities returns and
USD/EUR exchange rate
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Figure 10. Estimated wavelet correlation between commodities returns and
MSCI world market index
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