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1 Introduction

Since the seminal work of Ramsey [1928], optimal growth models have played a
central role in modern macroeconomics. Classical growth theory relies on the as-
sumption that labor is supplied in fixed amounts, although the original paper of
Ramsey did include the disutility of labor as an argument in consumers’ utility
functions. Subsequent research in applied macroeconomics (theories of business
cycles fluctuations) have reassessed the role of labor-leisure choice in the pro-
cess of growth. Nowadays, intertemporal models with elastic labor continue to
be the standard setting used to model many issues in applied macroeconomics.

Lagrange multiplier techniques have facilitated considerably the analysis of
constrained optimization problems. The applications of those techniques in
the analysis of intertemporal models inherits most of the tractability found
in a finite setting. However, the passage to an infinite dimensional setting
raises additional questions. These questions concern both the extension of the
Lagrangean in an infinite dimensional setting as well as the representation of
the Lagrange multipliers as a summable sequence.

Our purpose is to prove existence of competitive equilibrium for the basic
neoclassical model with elastic labor using some recent results (see Le Van
and Saglam [2004]) concerning the existence of Lagrange multipliers in infinite
dimensional spaces and their representation as a summable sequence.

Previous work addressing existence of competitive equilibrium issues in in-
tertemporal models attacks the problem of existence from an abstract point
of view. Following the early work of Peleg and Yaari [1970], this approach is
based on separation arguments applied to arbitrary vector spaces (see see Be-
wley [1972], Bewley [1982], Aliprantis et al. [1997], Dana and Le Van [1991]).
The advantage of this approach is that it yields general results capable of ap-
plication in a wide variety of specific models but they require a high level of
abstraction.

Dynamic optimizing models where infinitely-lived heterogeneous agents max-
imize their lifetime utilities in perfect foresight equilibrium settings have, to
date, concentrated on perfectly inelastic labor supply cases. In a complete
market model, Le Van and Vailakis [2003] have studied the so-called reduced
form associated with the welfare maximization problem in a single-sector model
with inelastic labor supply. Many difficulties arise when they prove conver-
gence of the optimal path due to the fact that the Pareto-optimum problem is
non-stationary. Their arguments exploit the fact that the stationary problem
involving only the agents with a discount factor equal to the maximum one has
a unique stable state ks. This property enable them to prove the consumption
paths of all agents with a discount factor equal to the maximum one converge
to strictly positive limit points. Subsequently, by using this limit points, they
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define a sequence of prices as the marginal utility and prove that the sequence of
prices belong to l1+ (see Lemma 9 in Le Van and Vailakis [2003]). This method,
with some additional assumptions1, also has been used in Le Van and Vailakis
[2004] to prove the existence of competitive equilibrium in a model with one
representative agent and elastic labor supply.

Recently, C. Le Van, M.H. Nguyen and Y. Vailakis [2007] extend the canon-
ical representative Ramsey model to include heterogeneous agents and elastic
labor supply where supermodularity is used to establish the convergence of op-
timal paths. The novelty in their works is that relatively impatient consumers
have their consumption and leisure converging to zero as time tends towards
infinity. However, they did not prove the existence of competitive equilibrium
of the economy and the method used in Le Van and Vailakis [2003] could not
apply due to the presence of leisure. The purpose of this paper is to complete
this important point. Our approach is based on the result of existence of La-
grange multipliers of the Pareto problem and their representation as a summable
sequence to define the sequence of prices and wage as these multipliers rather
than marginal utility as usual. Following the Negishi approach, our strategy for
tackling the question of existence relies on exploiting the link between Pareto-
optima and competitive equilibria. We show that there exists a Lagrange mul-
tiplier as a price system such that together with the Pareto-optimal solution
they constitute a price equilibrium with transfers. These transfers depend on
the individual weights involved in the social welfare function. An equilibrium
exists provided that there is a set of welfare weights such that the corresponding
transfers equal zero.

The organization of the paper is as follows. In section 2, we present the
model and provide sufficient conditions on the objective function and the con-
straint functions so that Lagrangean multipliers can be presented by an l1+ se-
quence. We characterize some dynamic properties of the Pareto optimal paths
of capital and of consumption-leisure. In particular, we prove that the optimal
consumption and leisure paths of the most impatient agents will converge to
zero in the long run, with a very elementary proof compared to the one in C. Le
Van, M-H. Nguyen and Y. Vailakis [2007] which uses supermodularity for lattice
programming. In section 3, we prove the existence of competitive equilibrium
by using the Negishi approach and the Brouwer fixed point theorem.

1They used assumptions u(ε,ε)
ε
→ +∞ as ε→ 0 for the proof ct > 0, lt > 0 and ucc

uc
≤ ucl

ul

for the proof kt > 0 for all t.
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2 The model

We consider an intertemporal model with m ≥ 1 consumers and one firm. The
preferences of each consumer take additively form:

∑∞
t=0 β

t
iu
i(cit, l

i
t) where βi ∈

(0, 1) is the discount factor. At date t, agent i consumes the quantity cit, spends a
quantity of leisure lit and supplies a quantity of labor Lit. Production possibilities
are presented by the gross production function F and a physical depreciation
δ ∈ (0, 1). Denote F (kt,

∑m
i=1(1− lit)) + (1− δ)kt = f(kt,

∑m
i=1(1− lit)).

We next specify a set of restrictions imposed on preferences and production
technology.2 The assumptions on period utility function ui : R2

+ → R are as
follows:

Assumption U1: ui is continuous, concave, increasing on R2
+ and strictly

increasing, strictly concave on R2
++.

Assumption U2: ui(0, 0) = 0.

Assumption U3: ui is twice continuously differentiable on R2
++ with partial

derivatives satisfying the Inada conditions: limc→0 u
i
c(c, l) = +∞, ∀l > 0 and

liml→0 u
i
l(c, l) = +∞, ∀c > 0.

The assumptions on the production function F : R2
+ → R+ are as follows:

Assumption F1: F is continuous, concave, increasing on R2
+ and strictly

increasing, strictly concave on R2
++.

Assumption F2: F (0, 0) = 0.

Assumption F3: F is twice continuously differentiable on R2
++ with partial

derivatives satisfying the Inada conditions: limk→0 Fk(k, 1) = +∞, limk→+∞
Fk(k,m) < δ and limL→0 FL(k, L) = +∞, ∀k > 0.

For any initial condition k0 ≥ 0, when a sequence k = (k0, k1, k2, ..., kt, ...)
such that 0 ≤ kt+1 ≤ f(kt,m) for all t, we say it is feasible from k0 and we denote
the class of feasible capital paths by Π(k0). Let ct = (c1

t , c
2
t , ...c

m
t ) denote the

m-vector of consumptions and lt = (l1t , l
2
t , ...l

m
t ) denote m-vector of leisure of all

agents at date t.A pair of consumption-leisure sequences (c, l) = ((c0, l0),(c1, l1), ...)
is feasible from k0 ≥ 0 if there exists a sequence k ∈ Π(k0) that satisfies

m∑

i=1

cit + kt+1 ≤ f(kt,
m∑

i=1

(1− lit)) and 0 ≤ lit ≤ 1∀t.

The set of feasible from k0 consumption-leisure is denoted by
∑

(k0). Assump-
tion F3 implies that

2We relaxed some important assumptions in the literature. For example, the convex cone

of zero of the production set (Bewley [1972]) or the strictly positiveness of derivatives of utility

functions on RL+ ( Bewley [1982]). The utility functions in our model may not differentiable

in R2
+ from which many difficulties arise when we deal with boundary points.
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fk(+∞,m) = Fk(+∞,m) + (1− δ) < 1,

fk(0,m) = Fk(0,m) + (1− δ) > 1.

From above, it follows that there exists k > 0 such that: (i) f(k,m) = k ,
(ii) k > k implies f(k,m) < k, (iii) k < k implies f(k,m) > k. Therefore for
any k ∈ Π(k0), we have 0 ≤ kt ≤ max(k0, k). Thus, a feasible sequence k ∈ l∞+
which in turn implies a feasible sequence (c, l) ∈ l∞+ × [0, 1]∞.

In what follows, we first study the Pareto optimum problem from which we
obtain the Lagrange multipliers in l1+. Then these multipliers will be used to
define prices and wages systems for the equilibrium.

Let ∆ = {η1, η2, ..., ηm|ηi ≥ 0 and
∑m

i=0 ηi = 1}. Given a vector of welfare
weights η ∈ ∆, define the Pareto problem

max
m∑

i=1

ηi

∞∑

t=0

βtiui(c
i
t, l

i
t)

s.t.
m∑

i=1

cit + kt+1 ≤ f(kt,
m∑

i=1

(1− lit)), ∀t

cit ≥ 0, lit ≥ 0, lit ≤ 1, ∀i, ∀t
kt ≥ 0, ∀t and k0 given.

It is well known that any Pareto-efficient allocation can be represented as the
solution to Pareto optimum problem. By varying the welfare weights it is
possible to trace the economy’s utility possibility frontier. Following the Negishi
approach, this procedure can also be used to prove the existence of a price
system that supports Pareto-optima and characterize competitive equilibria as
a set of welfare weights such that the associated transfer payments are zero.
Note that, for all k0 ≥ 0, 0 ≤ kt ≤ max(k0, k), then 0 ≤ cit ≤ f(max(k0, k),m)
∀t, ∀i = 1...m. Therefore, the sequence (uni )n =

∑n
i=1 β

t
iui(c

i
t, l

i
t) is increasing

and bounded, it will converge. Thus we can write

m∑

i=1

ηi

∞∑

t=0

βtiui(c
i
t, l

i
t) =

∞∑

t=0

m∑

i=1

ηiβ
t
iui(c

i
t, l

i
t).

Let denote

c = (c1, c2, ..., ci, ..., cm) where ci = (ci0, c
i
1, ...c

i
t, ...),

l = (l1, l2, ..., li, ..., lm) where li = (li0, l
i
1, ...l

i
t, ...),

x = (c,k, l) ∈ (l∞+ )m × l∞+ × (l∞+ )m.
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Define

F(x) = −
∞∑

t=0

m∑

i=1

ηiβ
t
iui(c

i
t, l

i
t)

Φ1
t (x) =

m∑

i=1

cit + kt+1 − f(kt,
m∑

i=1

(1− lit)) ∀t

Φ2i
t (x) = −cit, ∀t,∀i = 1...m

Φ3
t (x) = −kt, ∀t

Φ4i
t (x) = −lit,∀t, ∀i = 1...m

Φ5i
t (x) = lit − 1,∀t, ∀i = 1...m

Φt = (Φ1
t ,Φ

2i
t ,Φ

3
t+1,Φ

4i
t ,Φ

5i
t ), ∀t,∀i = 1...m

The Pareto problem can be written as:

minF(x)

s.t.Φ(x) ≤ 0,x ∈ (l∞+ )m × l∞+ × (l∞+ )m

where:

F : (l∞+ )m × l∞+ × (l∞+ )m → R ∪ {+∞}
Φ = (Φt)t=0...∞ : (l∞+ )m × l∞+ × (l∞+ )m → R ∪ {+∞}

Let C = dom(F) = {x ∈ (l∞+ )m × l∞+ × (l∞+ )m|F(x) < +∞}
Γ = dom(Φ) = {x ∈ (l∞+ )m × l∞+ × (l∞+ )m|Φt(x) < +∞, ∀t}.

The following theorem follows from Theorem1 and Theorem2 in Le Van and
Saglam [2004].

Theorem 1 Let x, y ∈ (l∞+ )m × l∞+ × (l∞+ )m, T ∈ N .

Define xTt (x,y) =

{
xt if t ≤ T
yt if t > T

Suppose that two following assumptions are satisfied:
T1: If x ∈ C, y ∈ (l∞+ )m × l∞+ × (l∞+ )m satisfy ∀T ≥ T0, xT (x,y) ∈ C then

F(xT (x,y))→ F(x) when T →∞.
T2: If x ∈ Γ, y ∈ Γ and xT (x,y) ∈ Γ, ∀T ≥ T0, then

a) Φt(xT (x,y))→ Φt(x)as T →∞
b) ∃Ms.t.∀T ≥ T0, ‖Φt(xT (x,y))‖ ≤M
c) ∀N ≥ T0, lim

t→∞[Φt(xT (x,y))− Φt(y)] = 0

Let x∗ be a solution to (P) and x ∈ C satisfy the Slater condition:

sup
t

Φt(x) < 0.
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Suppose xT (x∗,x) ∈ C ∩ Γ. Then, there exists Λ ∈ l1+\{0} such that

F(x) + ΛΦ(x) ≥ F(x∗) + ΛΦ(x∗), ∀x ∈ (C ∩ Γ)

and ΛΦ(x∗) = 0.

Obviously, for any η ∈ ∆, an optimal path will depend on η. In what
follows, we will suppress η and denote by (ci∗,k∗,Li∗, li∗) any optimal path for
each agent i if possible. The following proposition characterize the Lagrange
multipliers of the Pareto problem.

Proposition 1 If x∗ = (ci∗,k∗, li∗) is a solution to the Pareto problem:

max
∞∑

t=0

m∑

i=1

ηiβ
t
iui(c

i
t, l

i
t) (Q)

s.t.
m∑

i=1

cit + kt+1 ≤ f(kt,
m∑

i=1

(1− lit))∀t ≥ 0

cit ≥ 0, lit ≥ 0, lit ≤ 1, ∀i,∀t
kt ≥ 0, ∀t and k0 given.

Then there exists, ∀i = 1...m, λ = (λ1, λ2i, λ3, λ4i, λ5i) ∈ l1+× (l1+)m × l1+ ×
(l1+)m × (l1+)m λ 6= 0 such that

∞∑

t=0

m∑

i=1

ηiβ
t
iui(c

i∗
t , l

i∗
t )−

∞∑

t=0

λ1
t (

m∑

i=1

ci∗t + k∗t+1 − f(k∗t ,
m∑

i=1

(1− li∗t )))

−(1− δ)k∗t ) +
∞∑

t=0

λ2i
t c

i∗
t

∞
+
∑

t=0

λ3
tk
∗
t

∞
+
∑

t=0

λ4i
t l

i∗
t +

∞∑

t=0

λ5i
t (1− li∗t )

≥
∞∑

t=0

m∑

i=1

ηiβ
t
iui(c

i
t, l

i
t)−

∞∑

t=0

λ1
t (

m∑

i=1

cit + kt+1 − f(kt,
m∑

i=1

(1− lit)))

−(1− δ)kt) +
∞∑

t=0

λ2i
t c

i
t

∞
+
∑

t=0

λ3
tkt

∞
+
∑

t=0

λ4i
t l

i
t +

∞∑

t=0

λ5i
t (1− lit) (1)

λ1
t [

m∑

i=1

ci∗t + k∗t+1 − f(k∗t ,
m∑

i=1

Li∗t )] = 0 (2)

λ2i
t c

i∗
t = 0, ∀i = 1...m (3)

λ3
tk
∗
t = 0 (4)

λ4i
t l

i∗
t = 0, ∀i = 1...m (5)

λ5i
t (1− li∗t ) = 0,∀i = 1...m (6)
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0 ∈ ηiβti∂1u
i(ci∗t , l

i∗
t )− {λ1

t }+ {λ2i
t }, ∀i = 1...m (7)

0 ∈ ηiβti∂2u
i(ci∗t , l

i∗
t )− λ1

t∂2f(k∗t , L
∗
t ) + {λ4i

t } − {λ5i
t }, ∀i = 1...m (8)

0 ∈ λ1
t∂1f(k∗t , L

∗
t ) + {λ3

t } − {λ1
t−1} (9)

where, L∗t =
∑m

i=1 L
i∗
t =

∑m
i=1(1 − li∗t ), ∂ju(ci∗t , li∗t ), ∂jf(k∗t , L∗t ) respectively

denote the projection on the jth component of the subdifferential of function u

at (ci∗t , li∗t ) and the function f at (k∗t , L∗t )3

Proof : We show that the Slater condition holds. Since fk(0,m) > 1,4 as in
the Theorem2 in Le Van - Saglam [2004]. then for all k0 > 0, there exists some
0 < k̂ < k0 such that: 0 < k̂ < f(k̂,m) and 0 < k̂ < f(k0,m).Thus, there exists
two small positive numbers ε, ε1 such that:

0 < k̂ + ε < f(k̂,m− ε1) and 0 < k̂ + ε < f(k0,m− ε1).

Denote x = (c,k, l) such that c = (c1, c2, ...,ci, ..., cm), where

ci = (ct
i)t=0,...∞ = (

ε

m
,
ε

m
,
ε

m
, ...)

l = (l
1
, l

2
, ...,l

i
, ..., l

m
), where

l
i

= (lt
i
)t=0,...∞ = (

ε1

m
,
ε1

m
,
ε1

m
, .....).

and k = (k0, k̂, k̂, ...). We have

Φ1
0(x) =

m∑

i=0

ci0 + k1 ≤ f(k0,

m∑

i=1

(1− li0))

= ε+ k̂ − f(k0,m− ε1) < 0

Φ1
1(x) =

m∑

i=0

ci1 + k2 ≤ f(k1,
m∑

i=1

(1− li1))

= ε+ k̂ − f(k̂,m− ε1) < 0

Φ1
t (x) = ε+ k̂ − f(k̂,m− ε1) < 0, ∀t ≥ 2

Φ2i
t (x) = −cti = − ε

m
< 0, ∀t ≥ 0, ∀i = 1...m

3For a concave function f defined on Rn, ∂f(x) denotes the subdifferential of f at x. We

have to write the first-order conditions by the subgradient set since at the point (0, 0), the

functions ui and f are not assumed to be differentiable.
4As the Remark 6.1.1 in LeVan and Dana [2003], assumption fk(0, 1) > 1 is equivalent to

the Adequacy Assumption in Bewley (1972) and this assumption is crucial to have equilibrium

prices in l1+ since it implies that the production set has an interior point. Subsequenctly,

it allows using a separation theorem in the infinite dimensional space to derive Lagrange

multipliers.
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Φ3
0(x) = −k0 < 0;

Φ3
t (x) = −k̂ < 0 ∀t ≥ 1.

Φ4i
t (x) = −ε1

m
< 0, ∀t ≥ 0, ∀i = 1...m

Φ5i
t (x) =

ε1

m
− 1 < 0, ∀t ≥ 0, ∀i = 1...m

Therefore the Slater condition is satisfied.
It is obvious that, ∀T, xT (x∗,x) belongs to (l∞+ )m × l∞+ × (l∞+ )m.
As in Le Van-Saglam 2004, Assumption T2 is satisfied. We now check

Assumption T1.
For any x̃ ∈ C, ˜̃x ∈ (l∞+ )m × l∞+ × (l∞+ )m such that for any T, xT (x̃, ˜̃x) ∈ C

we have

F(xT (x̃, ˜̃x)) = −
T∑

t=0

m∑

i=1

ηiβ
t
iui(c̃it, l̃

i
t)−

∞∑

t=T+1

m∑

i=1

ηiβ
t
iui(

˜̃
cit,
˜̃
lit).

As ˜̃x ∈ (l∞+ )m × l∞+ × (l∞+ )m, sup
t
| ˜̃ct| < +∞ , there exists a > 0, ∀t, | ˜̃ct| ≤ a.

Since β ∈ (0, 1),as T →∞ we have

0 ≤
∞
|
∑

t=T+1

m∑

i=1

ηiβ
t
iui(

˜̃
cit,
˜̃
lit)| ≤ u(a, 1)

∞∑

t=T+1

m∑

i=1

ηiβ
t
i =

m∑

i=1

∞∑

t=T+1

ηiβ
t
i → 0 .

Hence, F(xT (x̃, ˜̃x)) → F(x̃) when T → ∞.Taking account of the Theorem 1,
we get (1) - (6).

Obviously, ∩mi=1ri(dom(ui)) 6= ∅ where ri(dom(ui)) is the relative interior of
dom(ui). It follows from the Proposition 6.5.5 in Florenzano and Le Van (2001),
we have

∂
m∑

i=1

ηiβ
t
iui(c

i∗
t , l

i∗
t ) = ηiβ

t
i

m∑

i=1

∂ui(ci∗t , l
i∗
t )

We then get (7) - (9) as the Kuhn-Tucker first-order conditions.

Let us denote I = {i |ηi > 0}, β = max{βi|i ∈ I}, I1 = {i ∈ I | βi = β} and
I2 = {i ∈ I | βi < β}.

In the following proposition, we will prove the positiveness of the optimal
capital, consumption and leisure paths which will be used later.

Proposition 2 i) If k0 > 0, the capital optimal paths k∗t > 0, ∀t.
ii) If ηi > 0 then ci∗t > 0, li∗t > 0 ∀t.

The proof is given in the Appendix. C. Le Van, M.H. Nguyen and Y. Vailakis
[2007] did not prove the positiveness of consumption and leisure paths. For the
capital path, by choosing only one agent in an alternative path, our proof is
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simpler since it does not require to consider two separated cases of one agent
and more than one agents.

We now show that the consumption and leisure paths of all agents with a
discount factor less than the maximum one converge to zero. The proof is very
simple compared to the one in C. Le Van, M.H. Nguyen and Y. Vailakis [2007]
which uses the supermodular structure inspired by lattice programming.

Proposition 3 If (k∗, ci∗, li∗) denotes the optimal path starting from k0, then
∀i ∈ I2, c

i∗
t −→ 0 and li∗t −→ 0.

Proof : Let

V (kt, kt+1) = max
m∑

i=1

ηiβ
t
iui(c

i
t, l

i
t)

s.t.
m∑

i=1

cit + kt+1 ≤ F (kt,
m∑

i=1

(1− lit)) + (1− δ)kt .

It is easy to see that problem (Q) is equivalent to

max
∞∑

t=0

V (kt, kt+1)

s.t. 0 ≤ kt+1 ≤ F (kt,m) + (1− δ)kt
k0 is given.

Assume that there exist i2 ∈ I2 and a subsequence (c∗i2τ ) which converges to
ci2 > 0 when τ →∞. Let a small ε > 0 and i1 ∈ I1. At the time t = τ, consider
a feasible path ((ci, li)i,k) defined as follows:

i) ci1τ = c∗i1τ + ε,

ii) ci2τ = c∗i2τ − ε, ciτ = c∗iτ , ∀i ∈ I\{i1, i2}
iii) liτ = l∗iτ , ∀i ∈ I,
iv) kt = k∗t , ∀t.

Define

∆τ (ε) =
m∑

i=1

ηiβ
t
iui(c

i
t, l

i
t)−

m∑

i=1

ηiβ
t
iui(c

∗i
t , l
∗i
t )

= ηi1β
τ
[
ui1(ci1τ , l

i1
τ )− ui1(c∗i1τ , l∗i1τ )

]

+ ηi2β
τ
i2

[
ui2(ci2τ , l

i2
τ )− ui2(c∗i2τ , l∗i2τ )

]

= βτ [ηi1ui1(ci1τ , l
i1
τ )− ηi1ui1(c∗i1τ , l∗i1τ )

+[ηi2ui2(ci2τ , l
i2
τ )− ηi2ui2(c∗i2τ , l∗i2τ )](

βi2
β

)τ ]

9



The concavity of ui1 , ui2 imply that

∆τ (ε) ≥ βτ
[
ηi1u

i1
c (ci1τ , l

∗i1
τ )− ηi2ui2c (ci2τ , l

∗i2
τ )(

βi2
β

)τ
]
ε.

Since (c∗i2τ ) → ci2 > 0, ηi2u
i2
c (ci2τ , l

∗i2
τ )(βi2β )τ → 0 when τ → ∞, ci1τ is bounded,

∆τ (ε) > 0 when τ →∞. We get a contradiction. Hence ∀i ∈ I2, c
i∗
t −→ 0 .

Similarly, we can prove that li∗t −→ 0 ∀i ∈ I2.

3 Existence of competitive equilibrium

Let us now give the characterization of equilibrium. For each consumer i, let
denote:

A sequence of prices (p0, p1,...) ∈ l1+\{0},a price r > 0 for the initial capital
stock.

A consumption allocation ci = (ci0, c
i
1, ...c

i
t, ...) where cit denote the quantity

which agent i consumes at date t.
A sequence of capital stocks k = (k0, k1, ...kt, ...) where k0 is the initial en-

dowment of capital. Denote αi > 0 be the share the profit of the firm owned
by consumer i,

∑m
i=1 α

i = 1, ϑi > 0 be the share of initial endowment owned
by consumer i,

∑m
i=1 ϑ

i = 1 and ϑi k0 be the endowment of consumer i. Let
denote li = (li0, l

i
1, ..., l

i
t, ...), Li = (Li0, L

i
1, ..., L

i
t, ...),w = (w0, w1, ...., wt, ...) be

the sequences of leisure, labor supply and wage, respectively.

Definition 1 A competitive equilibrium for this model is defined as follows.
With an allocation {ci∗,k∗, li∗,Li∗}, one can associate a price sequence p∗ for
consumption good, a wage sequence w∗ for labor and a price r for the initial
capital stock k0 such that

i)

c∗ ∈ l∞+ , l
i∗ ∈ l∞+ ,Li∗ ∈ l∞+ ,k∗ ∈ l∞+ ,

p∗ ∈ l+1 \{0},w∗ ∈ l+1 \{0}, r > 0.

ii)For every i, (ci∗, li∗) is a solution to the problem

max
∑∞

t=0 β
t
iui(c

i
t, l

i
t)

s.t
∑∞

t=0 p
∗
t c
i
t +
∑∞

t=0w
∗
t l
i
t ≤

∑∞
t=0w

∗
t+ϑ

irk0 + αiπ∗

where π∗ is the maximum profit of the single firm.
iii) (k∗,L∗) is a solution to the firm’s problem:

10



iv)Markets clear: ∀t,
m∑

t=1

ci∗t + k∗t+1 = f(k∗t ,
m∑

t=1

Li∗t ),

li∗t + Li∗t = 1, L∗t =
m∑

t=1

Li
∗
t and k∗0 = k0.

With the optimal path (c∗, k∗, l∗, L∗) we have proved that there exists the
Lagrange multipliers

λ(η) = (λ1(η), λ2i(η), λ3(η), λ4i(η), λ5i(η))

∈ l1+ × (l1+)m × l1+ × (l1+)m × (l1+)m, i = 1...m,

for the Pareto problem. In what follow, we want to prove, with the optimal
path (c∗, k∗, l∗,L∗), one can associate a sequence of prices p∗t , a sequence of
wages w∗t defined as

p∗t = λ1
t ∀t

w∗t = λ1
t fL(k∗t , L

∗
t ) ∀t

where fL(k∗t , L∗t ) ∈ ∂2f(k∗t , L∗t ), and a price r > 0 for the initial capital stock
k0 such that ( c∗, k∗, l∗,L∗,p∗,w∗, r ) is a price equilibrium with transfers. We
next show that, there exists a set of welfare weights such that these transfers
equal to zero.

Lemma 1 Let k0 > 0. The sequence of prices p∗t , the sequence of wages w∗t
defined as

p∗t = λ1
t ,

w∗t = λ1
t fL(k∗t , L

∗
t ) ∀t where fL(k∗t , L

∗
t ) ∈ ∂2f(k∗t , L

∗
t )

belong to l+1 \{0}.

Proof : See in the Appendix.

Now we define a price equilibrium with transfers

Definition 2 A given allocation {ci∗,k∗, li∗,Li∗}, together with a price se-
quence p∗ for consumption good, a wage sequence w∗ for labor and a price r for
the initial capital stock k0 which constitute a price equilibrium with transfers if

i)

c∗ ∈ (l∞+ )m, l∗ ∈ (l∞+ )m,L∗ ∈ (l∞+ )m,k∗ ∈ l∞+ ,
p∗ ∈ l+1 \{0},w∗ ∈ l+1 \{0}, r > 0

11



ii) For every i = 1...m, (ci∗, li∗) is a solution to the problem

max
∞∑

t=0

βtiui(c
i
t, l

i
t)

st
∞∑

t=0

p∗t c
i
t +

∞∑

t=0

w∗t l
i
t ≤

∞∑

t=0

p∗t c
i∗
t +

∞∑

t=0

w∗t l
i∗
t

iii) (k∗,L∗) is a solution to the firm’s problem:

π∗ = max
∞∑

t=0

p∗t [f(kt, Lt)− kt+1]−
∞∑

t=0

w∗tLt − rk0

st 0 ≤ kt+1 ≤ f(kt, Lt), 0 ≤ Lt, ∀t

iv)Markets clear

∀t, ∑m
i=1 c

i∗
t + k∗t+1 = f(k∗t ,

m∑

i=1

Li∗t ),

L∗t =
∑m

i=1 L
i∗
t , li∗t = 1− Li∗t and k∗0 = k0

Theorem 2 Let ( k∗, c∗,L∗, l∗) solve Problem (Q). Take

p∗t = λ1
t , w

∗
t = λ1

t fL(k∗t , L
∗
t ) for any t

and r = λ1
0[Fk(k0, 0) + 1− δ].

Then {c∗,k∗,L∗,p∗,w∗, r} is a price equilibrium with transfers .

Proof : See in the Appendix.

The appropriate transfer to each consumer is the amount that just allows the
consumer to afford the consumption stream allocated by the social optimization
problem. Thus, for given weight η ∈ ∆, the required transfers are:

φi(η) =
∞∑

t=0

p∗t (η)ci∗t (η) +
∞∑

t=0

w∗t (η)li∗t (η)−
∞∑

t=0

w∗t (η)−ϑirk0 − αiπ∗(η)

where

π∗(η) =
∞∑

t=0

p∗t (η)[f(k∗t (η), L∗t (η))− k∗t+1(η)]−
∞∑

t=0

w∗t (η)L∗t (η)− rk0.

A competitive equilibrium for this economy corresponds to a set of welfare
weights η ∈ ∆ such that these transfers equal to zero.

Proposition 4 i) Let k0 > 0. Then for any η ∈ ∆, π∗(η) ≥ 0.
ii) If ηi = 0 then ∀t, ci∗t = 0, li∗t = 0 and φi(η) < 0.

12



Proof : i) Let (k0, 0, 0, ...) ∈ Π(k0). Then

π∗(η) ≥ λ1
0(η)[F (k0, 0) + (1− δ)k0]− rk0

= λ1
0(η)[F (k0, 0) + (1− δ)k0]− λ1

0(η)[Fk(k0, 0) + 1− δ]k0

≥ 0.

ii) Let ηi = 0. Suppose for simplicity that ci∗0 > 0.
Let j satisfies ηj > 0. Define ci∗∗0 = 0, cj∗∗0 = cj∗0 + ci∗0 . We have

ηiui(ci∗∗0 , li∗0 ) = ηiui(ci∗0 , l
i∗
0 ) = 0, ηjuj(c

j∗∗
0 , lj∗0 ) > ηjuj(c

j∗
0 , l

j∗
0 ).

Hence we get new utility is greater than the optimum which leads to contradic-
tion. Now, assume that li∗0 > 0. Let j satisfies ηj > 0. Define

cj∗∗0 = F (k0,m−
∑

k 6=i
lk0) + (1− δ)k0 − k1 −

∑

k 6=j
ck∗0

li∗∗0 = 0

We have cj∗∗0 > cj∗0 and

ηiui(ci∗0 , l
i∗∗
0 ) = ηiui(ci∗0 , l

i∗
0 ) = 0, ηjuj(c

j∗∗
0 , lj∗0 ) > ηjuj(c

j∗
0 , l

j∗
0 ).

that also leads to contradiction. Thus, ci∗t = 0, li∗t = 0 ∀t. Now, we have

φi(η) =
∞∑

t=0

p∗t (η)ci∗t (η) +
∞∑

t=0

w∗t (η)li∗t (η)

−
∞∑

t=0

w∗t (η)−ϑirk0 − αiπ∗(η)

= −
∞∑

t=0

w∗t (η)−ϑirk0 − αiπ∗(η) < 0.

For given η, properties in the Proposition 2 , k∗t > 0, ci∗t > 0, li∗t > 0
∀t, ∀i ∈ I, and Inada condition on function F implies the uniqueness of Lagrange
multipliers λ1

t = p∗t (η) = ηiβ
t
iu
i
c(c

i∗
t , l

i∗
t ), w∗t (η) = λ1

t fL(k∗t , L∗t ). Thus, φi(.) is a
function of η. The following theorem is a direct application of Brouwer’s fixed
point theorem.

Theorem 3 Let k0 > 0. Then there exists η ∈ ∆, η >> 0, such that φi(η) =
0, ∀i . That means there exists an equilibrium.

Proof : First, we prove that φi(.) is a continuous function of η for every i. Let
ηn ∈ ∆ and ηn → η ∈ ∆. We shall prove that φi(ηn) → φi(η). It is easy to
check that, for given η ∈ ∆,

U(η,k, c, l) =
∞∑

t=0

m∑

i=1

ηiβ
t
iui(c

i
t, l

i
t)
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is continuous over ∆ × Π(k0)× ∑(k0), Π(k0)× ∑(k0) is compact, it follows
from Berge’s Theorem that ci∗t (η), k∗t (η), li∗t (η) are continuous functions of η for
the product topology. Let us recall that φi(η) =

∞∑

t=0

p∗t (η)ci∗t (η) +
∞∑

t=0

w∗t (η)li∗t (η)−
∞∑

t=0

w∗t (η)−ϑirk0 − αiπ∗(η).

Firstly, we consider the first three terms of φi(η). Boundedness of ci∗t (η), li∗t (η),
concavity of ui together with conditions (3),(5),(6),(10),(11) imply that, ∀i =
1, ..,m,

ηiβ
t
iui(c

i∗
t (η), li∗t (η))− ηiβtiui(0, 0)

≥ ηiβtiuic(ci∗t (η), li∗t (η))ci∗t (η)

=
[
λ1
t (η)− λ2i

t (η)
]
ci∗t (η) = λ1

t (η)ci∗t (η).

ηiβ
t
iui(c

i∗
t (η), li∗t (η))− ηiβtiui(0, 0)

≥ ηiβ
t
iu
i
l(c

i∗
t (η), li∗t (η))li∗t (η)

= [w∗t (η)− λ4i
t (η) + λ5i

t (η)]li∗t (η)

= [w∗t (η) + λ5i
t (η)]li∗t (η) ≥ w∗t (η)li∗t (η).

(Note that if i /∈ I then ci∗t (η) = 0, li∗t (η) = 0).
Thus, ∀ε > 0, there exist T and a real number M > 0 such that

∞∑

t=T

p∗t (η)ci∗t (η) =
∞∑

t=T

λ1
t (η

n)ci∗t (η) ≤
∞∑

t=T

Mβti <
ε

9
.

∞∑

t=T

w∗t (η)li∗t (η) ≤
∞∑

t=T

Mβti <
ε

9
.

Moreover, since
∑∞

t=0w
∗
t (η) < +∞, we also can write

∞∑

t=T

w∗t (η) <
ε

9
.

For some i ∈ I, we have

p∗t (η
n) → ηiβ

t
iu
i
c(c

i∗
t , l

i∗
t ) = p∗t (η),

w∗t (η
n) → λ1

t fL(k∗t , L
∗
t ) = w∗t (η)

since ci∗t (ηn)→ ci∗t (η) > 0, li∗t (ηn)→ li∗t (η) > 0. Thus,

|
∞∑

t=0

p∗t (η
n)ci∗t (ηn) +

∞∑

t=0

w∗t (η
n)li∗t (ηn)−

∞∑

t=T

w∗t (η
n)

−
∞∑

t=0

p∗t (η)ci∗t (η)−
∞∑

t=0

w∗t (η)li∗t (η) +
∞∑

t=T

w∗t (η)|
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≤ |
T∑

t=0

p∗t (η
n)ci∗t (ηn)−

T∑

t=0

p∗t (η)ci∗t (η)|+ (i)

|
T∑

t=0

w∗t (η
n)li∗t (ηn)−

T∑

t=0

w∗t (η)li∗t (η)|+ (ii)

|
T∑

t=0

w∗t (η
n)−

T∑

t=0

w∗t (η)| (iii)

+
∞∑

t=T

p∗t (η
n)ci∗t (ηn) +

∞∑

t=T

p∗t (η)ci∗t (η)

+
∞∑

t=T

w∗t (η
n)li∗t (ηn) +

∞∑

t=T

w∗t (η)li∗t (η)

+
∞∑

t=T

w∗t (η
n) +

∞∑

t=T

w∗t (η) < ε

since, given T, the continuity of p∗t (η), w∗t (η), ci∗t (η), li∗t (η) implies that there
exist N such that for any n ≥ N, each term (i),(ii),(iii) is smaller than ε

9 .

The similar arguments can show that

ϑir(ηn)k0 − αiπ∗(ηn)→ ϑir(η)k0 − αiπ∗(η).

Hence, φi(.) is a continuous function of η.
Let define T : ∆→∆, T (η) = (T1(η), T2(η), ..., Tm(η)) where Ti(η) defined

as

Ti(η) =
ηi + φ

′
i(η)

1 +
∑m

i=1 φ
′
i(η)

with φ
′
i(η) = −φi(η) if φi(η) < 0, and φ

′
i(η) = 0 if φi(η) ≥ 0. T is a continuous

mapping from the simplex into itself. By the Brouwer fixed point theorem,
there exists η ∈ ∆ such that T (η) = η. We have

ηi =
λi + φ

′
i(η)

1 +
∑m

i=1 φ
′
i(η)

⇔ ηi

m∑

i=1

φ
′
i(η) = φ

′
i(η) (1)

If ηi = 0, Proposition 4 (ii) implies that φi(ηi) < 0 and φ
′
i(η) > 0 :a contradic-

tion with (1). Thus, ηi > 0, ∀i. If
m∑
i=1

Φ
′
i(η) > 0, then Φ

′
i(η) > 0, ∀i. From the

definition of φ
′
i(η) this implies φi(η) < 0, ∀i. But this contradicts Walras’ Law

which says
m∑
i=1
φi(η) = 0. Thus,

m∑
i=1
φ
′
i(η) = 0 which implies φ

′
i(η) = 0, ∀i. But

in this case we have φi(η) ≥ 0, ∀i. From Walras’ Law we have φi(η) = 0, ∀i.
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4 Conclusion

In this paper, we prove the existence of competitive equilibrium in an optimal
growth model with heterogeneous agents and elastic labor supply. This paper is
an extension of Le Van and Vailakis [2003] who studied the model without labor
supply. It is also the completeness of the important issue about the existence
of competitive equilibrium in the model of C. Le Van, M.H. Nguyen and Y.
Vailakis [2007]. Following the Negishi approach, our strategy for tackling the
question of existence relies on exploiting the link between Pareto-optima and
competitive equilibria. The proof is based on the result of existence of Lagrange
multipliers of the Pareto problem and their representation as a summable se-
quence. We show that there exists a Lagrange multiplier as a price system such
that together with the Pareto-optimal solution they constitute a price equilib-
rium with transfers. These transfers depend on the individual weights involved
in the social welfare function. An equilibrium exists provided that there is a
set of welfare weights such that the corresponding transfers equal zero.

5 Appendix

Proof of Proposition 2

Proof : i) Let k0 > 0 but assume that k∗1 = 0. Denote L∗t = m−∑i∈I l
∗i
t . Since

∑

i∈I
c∗i0 = f(k0, L

∗
0) > 0,

there exists some i1 ∈ I such that c∗i10 > 0. First, we claim that there exists p
with l∗p1 > 0.

Assume the contrary that l∗i1 = 0,∀i ∈ I. In this case, we prove that there
exists p with c∗p1 > 0. Indeed, if c∗i1 = 0 ∀i ∈ I then k∗2 = f(0,m). Choose
ε > 0 such that c∗i10 > ε + ε2. Let α = ε+1

βi1
and γ = ε+1

βi1 [c
∗i1
0 −(ε+ε2)]

. Consider

the alternative path ((ci, li)i,k) defined as follows:

i) ci10 = c∗i10 − (ε+ ε2), ci0 = c∗i0 , ∀i ∈ I\{i1}
ii) ci11 = αε, ci1 = 0, ∀i ∈ I\{i1}
iii) li0 = l∗i0 , ∀i ∈ I, li11 = γε, li1 = 0, ∀i ∈ I\{i1}
iv) cit = c∗it and lit = l∗it , ∀i ∈ I,∀t ≥ 2

v) k1 = ε, kt = k∗t , ∀t ≥ 2.
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Observe that
∑

i∈I
ci0 + k1 =

c∗i10 − (ε+ ε2) +
∑

i∈I\{i1}
c∗i0 + ε ≤

∑

i∈I
c∗i0 + k∗1 = f(k0, L

∗
0).

Moreover,

f(k1,m− li11 )− k2 − ci11
= f(ε,m− γε)− f(0,m)− αε
≥ ε[fk(ε,m− γε)− fL(ε,m− γε)γ − α].

Due to the Inada conditions on F, the term inside the bracket is strictly positive
for ε small enough. This proves feasibility of the alternative path.

Observe that as ε→ 0 both α and γ converge to a finite value. In addition,
α
γ = ci10 . Define:

∆(ε) =
∑

i∈I
ηi

∞∑

t=0

βtiui(c
i
t, l

i
t)−

∑

i∈I
ηi

∞∑

t=0

βtiui(c
i∗
t , l

i∗
t )

= ηi1 [ui1(ci10 , l
i1
0 )− ui1(c∗i10 , l∗i10 )] + ηi1βi1

[
ui1(ci11 , l

i1
1 )− ui1(c∗i11 , l∗i11 )

]
.

The concavity of ui1 implies that

∆(ε)
ηi1

= βi1

[
ui1(ci11 , l

i1
1 )− ui1(c∗i11 , l∗i11 )

]
+ [ui1(ci10 , l

i1
0 )− ui1(c∗i10 , l∗i10 )]

≥ βi1ui1(αε, γε)− ui1c (ci10 , l
i1
0 )(ε+ ε2).

If ui1cl > 0, then

∆i1(ε)
ηi1

≥ βi1ui1

(
γε
αε

γε
, γε

)
− ui1c (ci10 , l

i1
0 )(ε+ ε2)

≥ βi1ui1

(
α

γ
, 1
)
γε− ui1c (ci10 , l

i1
0 )(ε+ ε2)

≥ βi1u
i1
c

(
α

γ
, 1
)
αε− ui1c (ci10 , l

i1
0 )(ε+ ε2)

= βi1u
i1
c

(
ci10 , 1

) ε2 + ε

βi1
− ui1c (ci10 , l

i1
0 )(ε+ ε2)

= (ε2 + ε)[ui1c
(
ci10 , 1

)
− ui1c (ci10 , l

i1
0 )] ≥ 0.

If ui1cl ≤ 0, then

∆(ε)
ηi1

≥ βi1ui1(αε, γε)− ui1c (ci10 , l
i1
0 )(ε+ ε2)

≥ βi1u
i1
c (αε, γε)αε− ui1c (ci10 , l

i1
0 )(ε+ ε2)

≥ (ε2 + ε)[ui1c (αε, 1)− ui1c (ci10 , l
i1
0 )].
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Due to the Inada conditions on ui1 , the term inside the bracket becomes non-
negative for ε small enough. A contradiction.

Thus, there exists p such that c∗p1 > 0. For this p, we claim that l∗p1 > 0.
Indeed, if this were false, define a feasible path as follows:

i) lp1 = ε, li1 = l∗i1 , ∀i 6= p,

ii) cp1 = c∗p1 + f(0,m− ε)− f(0,m), ci1 = c∗i1 ∀i 6= p,

iii) cit = c∗it , l
i
t = l∗it , ∀i,∀t 6= 1, kt = k∗t ∀t.

Define:

∆p(ε) =
∑

i∈I
ηi

∞∑

t=0

βtiui(c
i
t, l

i
t)−

∑

i∈I
ηi

∞∑

t=0

βtiui(c
∗i
t , l
∗i
t )

= ηpβp
[
up(c

p
1, ε)− up(c∗p1 , 0)

] ≥ ηpβpupc(cp1, ε)(f(ε, L∗1)− f(0, L∗1))

+ηpβpu
p
l (c

p
1, ε)ε ≥ ηpβp[−upc(cp1, ε)(fL(0,m− ε) + upl (c

p
1, ε)]ε .

As ε → 0, upl (c
p
1, ε) → +∞ while −upc(cp1, ε)(fL(0,m − ε) < +∞. Hence, for

ε > 0 small enough, ∆p(ε) > 0 : a contradiction. Thus, l∗p1 > 0.
Now, we consider the alternative feasible path ((ci, li)i,k) defined as follows:

i) cp0 = c∗p0 − ε, cp1 = c∗p1 + f(ε, L∗1)− f(0, L∗1), cpt = c∗pt , ∀t ≥ 2,

ii) cit = c∗it ∀i 6= p,∀t and lit = l∗it , ∀i,∀t
iii) k1 = ε, kt = k∗t , ∀t ≥ 2.

Define:

∆ε =
∑

i∈I
ηi

∞∑

t=0

βtiui(c
i
t, l

i
t)−

∑

i∈I
ηi

∞∑

t=0

βtiui(c
i∗
t , l

i∗
t )

The concavity of up and f implies that

∆p(ε)
ηp

= up(c
p
0, l

p
0)− up(c∗p0 , l∗p0 ) + βp

[
up(c

p
1, l

p
1)− up(c∗p1 , lp1)

]

≥ [−upc(cp0, lp0) + βpu
p
c(c

p
1, l

p
1)fk(ε, L∗1)]ε.

As ε → 0, βpu
p
c(c

p
1, l

p
1)fk(ε, L∗1) → +∞ while upc(c

p
0, l

p
0) → upc(c

∗p
0 , l

∗p
0 ) < +∞.

Hence, for ε > 0 small enough, ∆p(ε) > 0 : a contradiction. It follows that
k∗1 > 0. Working by induction we can show that k∗t > 0 for any t.

ii) It follows from proposition 10 in C. Le Van, M.H Nguyen and Y. Vailakis
[2007] that there exists γ > 0 such that k∗t > γ ∀t. Suppose that there exist an
optimal paths (c∗, l∗,k∗) with c1∗

0 = 0,we can choose a feasible paths from this
optimal paths where we just repalce c1∗

0 , k
∗
t with c1

0 = ε0 > 0, kt = k∗t − εt in
which {εt} is an increasing sequence bounded from above by γ ( for example,
εt = γ − 1

t+n , n > 0) such that
∑

i∈I c
∗i
t + k∗t+1 − εt+1 ≤ f(k∗t − εt, L∗t ). This

feasible path create a new greater value than optimal value which leads to a
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contradiction. Thus c∗it > 0 for all t. It follows from (7) that l∗it > 0. (Otherwise,
λ1
t would not belong to l1+).

Proof of Lemma 1

Proof : Consider λ(η) = (λ1, λ2i, λ3, λ4i, λ5i) of Proposition 1. Conditions
(7),(8),(9) in Proposition 1 show that ∀i = 1...m, ∂ui(ci∗t , li∗t ) and ∂F (k∗t , L∗t )
are nonempty. Moreover,∀t, ∀i = 1...m, there exists uic(c

i∗
t , l

i∗
t ) ∈ ∂1ui(ci∗t , li∗t ),

uil(c
i∗
t , l

i∗
t ) ∈ ∂2ui(ci∗t , li∗t ), fk(k∗t , L∗t ) ∈ ∂1f(k∗t , L∗t )and fL(k∗t , L∗t ) ∈ ∂2f(k∗t , L∗t )

such that
ηiβ

t
iu
i
c(c

i∗
t , l

i∗
t )− λ1

t + λ2i
t = 0, ∀i = 1...m (10)

ηiβ
t
iu
i
l(c

i∗
t , l

i∗
t )− λ1

t fL(k∗t , L
∗
t ) + λ4i

t − λ5i
t = 0,∀i = 1...m (11)

λ1
t fk(k

∗
t , L

∗
t ) + λ3

t − λ1
t−1 = 0 (12)

We have

+∞ >
∞∑

t=0

βtiui(c
i∗
t , l

i∗
t )−

∞∑

t=0

βtiui(0, 0) ≥

∞∑

t=0

βtiu
i
c(c

i∗
t , l

i∗
t )ci∗t +

∞∑

t=0

βtiu
i
l(c

i∗
t , l

i∗
t )li∗t , ∀i = 1...m

which implies
∞∑

t=0

βtiu
i
l(c

i∗
t , l

i∗
t )li∗t < +∞, ∀i = 1...m (13)

and for any i,

+∞ >
∞∑

t=0

λ1
t f(k∗t , L

∗
t )−

∞∑

t=0

λ1
t f(0, L∗t − Li∗t ) ≥

∞∑

t=0

λ1
t fk(k

∗
t , L

∗
t )k
∗
t +

∞∑

t=0

λ1
t fL(k∗t , L

∗
t )L

i∗
t

which implies
∞∑

t=0

λ1
t fL(k∗t , L

∗
t )L

i∗
t < +∞. (14)

Given T, we multiply (11), for each i, by Li∗t and sum up from 0 to T . We then
obtain

∀T,
T∑

t=0

ηiβ
t
iu
i
l(c

i∗
t , l

i∗
t )Li∗t =

T∑

t=0

λ1
t fL(k∗t , L

∗
t )L

i∗
t (15)

−
T∑

t=0

λ4i
t L

i∗
t +

T∑

t=0

λ5i
t L

i∗
t , ∀i = 1...m

Observe that

0 ≤
∞∑

t=0

λ5i
t L

i∗
t ≤

∞∑

t=0

λ5i
t < +∞, ∀i = 1...m (16)
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0 ≤
∞∑

t=0

λ4i
t L

i∗
t ≤

∞∑

t=0

λ4i
t < +∞, ∀i = 1...m (17)

Thus, since Li∗t = 1− li∗t , ∀i = 1...m, from (15), we get

T∑

t=0

ηiβ
t
iu
i
l(c

i∗
t , l

i∗
t ) =

T∑

t=0

ηiβ
t
iu
i
l(c

i∗
t , l

i∗
t )li∗t +

T∑

t=0

λ1
t fL(k∗t , L

∗
t )L

i∗
t

+
T∑

t=0

λ5i
t L

i∗
t −

T∑

t=0

λ4i
t L

i∗
t

Using (13),(14),(16),(17) and letting T →∞, we obtain

0 ≤
∞∑

t=0

ηiβ
t
iu
i
l(c

i∗
t , l

i∗
t ) =

∞∑

t=0

ηiβ
t
iu
i
l(c

i∗
t , l

i∗
t )li∗t +

∞∑

t=0

λ1
t fL(k∗t , L

∗
t )L

i∗
t +

∞∑

t=0

λ5i
t L

i∗
t −

∞∑

t=0

λ4i
t L

i∗
t < +∞

Consequently, from (11),

∞∑

t=0

w∗t =
∞∑

t=0

λ1
t fL(k∗t , L

∗
t ) < +∞.

For all i ∈ I, Proposition 2 (ii) together with conditions (3), (10) imply that
p∗t = λ1

t = ηiβ
t
iu
i
c(c

i∗
t , l

i∗
t ) > 0. Inada condition on function F together with

(8) imply that L∗t > 0. Hence, by Proposition 2 (i), w∗t (η) = λ1
t fL(k∗t , L∗t ) > 0.

Therefore, p∗t , w∗t belong to l+1 \{0}. This completes the proof.

Proof of Theorem 2

Proof : i) From Proposition 1 and Lemma 1, we get

c∗ ∈ (l∞+ )m, l∗ ∈ (l∞+ )m,k∗ ∈ l∞+ ,p∗ ∈ l+1 \{0},w∗ ∈ l+1 \{0}, r > 0.

ii) We now show that (ci∗, li∗) solves the consumer’s problem. Let (ci, li) satis-
fies ∞∑

t=0

p∗t c
i
t +

∞∑

t=0

w∗t l
i
t ≤

∞∑

t=0

p∗t c
i∗
t +

∞∑

t=0

w∗t l
i∗
t .

By the concavity of ui, we have:

∞∑

t=0

βtiui(c
i∗
t , l

i∗
t )−

∞∑

t=0

βtiui(c
i
t, l

i
t)

≥
∞∑

t=0

βtiu
i
c(c

i∗
t , l

i∗
t )(ci∗t − cit) +

∞∑

t=0

βtiu
i
l(c

i∗
t , l

i∗
t ) (li∗t − lit).
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Combining (3 ),(6),(10),(11) yields that

∆ ≥
∞∑

t=0

(λ1
t − λ2i

t )
ηi

(ci∗t − cit) +
∞∑

t=0

(λ1
t fL(k∗t , L∗t )− λ4i

t + λ5i
t )

ηi
(li∗t − lit)

≥
∞∑

t=0

λ1
t

ηi
(ci∗t − cit) +

∞∑

t=0

λ1
t fL(k∗t , L∗t )

ηi
(li∗t − lit) +

∞∑

t=0

λ5i
t (1− lit)
ηi

≥
∞∑

t=0

λ1
t

ηi
(ci∗t − cit) +

∞∑

t=0

λ1
t fL(k∗t , L∗t )

ηi
(li∗t − lit)

=
∞∑

t=0

p∗t
ηi

(ci∗t − cit) +
∞∑

t=0

w∗t
ηi

(li∗t − lit) ≥ 0.

This means (ci∗, li∗) solves the consumer’s problem.
iii) We now show that (k∗,L∗) is solution to the firm’s problem. Since

p∗t = λ1
t , w

∗
t = λ1

t fL(k∗t , L∗t ), we have

π∗ =
∞∑

t=0

λ1
t [f(k∗t , L

∗
t )− k∗t+1]−

∞∑

t=0

λ1
t fL(k∗t , L

∗
t ) L

∗
t − rk0.

Let :

∆T =
T∑

t=0

λ1
t [f(k∗t , L

∗
t )− k∗t+1]−

T∑

t=0

λ1
t fL(k∗t , L

∗
t ) L

∗
t − rk0

−
(

T∑

t=0

λ1
t [f(kt, Lt)− kt+1]−

T∑

t=0

λ1
t fL(k∗t , L

∗
t )Lt − rk0

)

By the concavity of f , we get

∆T ≥
T∑

t=1

λ1
t fk(k

∗
t , L

∗
t )(k

∗
t − kt)−

T∑

t=0

λ1
t (k
∗
t+1 − kt+1)

= [λ1
1fk(k

∗
1, L

∗
1)− λ1

0](k∗1 − k1) + ...

+[λ1
T fk(k

∗
T , L

∗
T )− λ1

T−1](k∗T − kT )− λ1
T (k∗T+1 − kT+1).

By (4) and (12), we have: ∀t = 1, 2, ..., T

[λ1
t fk(k

∗
t , L

∗
t )− λ1

t−1](k∗t − kt)
= −λ3

t (k
∗
t − kt) = λ3

tkt ≥ 0.

Thus,

∆T ≥ −λ1
T (k∗T+1 − kT+1) = −λ1

Tk
∗
T+1 + λ1

TkT+1 ≥ −λ1
Tk
∗
T+1.

Since λ1 ∈ l1+, sup
T
k∗T+1 < +∞, we have

lim
T→+∞

∆T ≥ lim
T→+∞

− λ1
Tk
∗
T+1 = 0.

We have proved that the sequences (k∗,L∗) maximize the profit of the firm.
It is easy to see that market is clearing at the equilibrium.
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