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1 Introduction

Since the seminal work of Ramsey (1928), optimal growth models have played
a central role in modern macroeconomics. Classical growth theory relies on the
assumption that labor is supplied in fixed amounts, although the original paper
of Ramsey did include the disutility of labor as an argument in consumers’ utility
functions. Subsequent research in applied macroeconomics (theories of business
cycles fluctuations) has reassessed the role of the labor-leisure choice in the
process of growth. Nowadays, intertemporal models with elastic labor continue
to be the standard setting used to model many issues in applied macroeconomics.

Our purpose is to prove existence of competitive equilibrium for the basic
neoclassical model with elastic labor with less stringent assumptions than in the
literature using some recent results (see Le Van and Saglam (2004)) concerning
the existence of Lagrange multipliers in infinite dimensional spaces and their
representation as a summable sequence.

Lagrange multiplier techniques have facilitated considerably the analysis of
constrained optimization problems. The application of these techniques in the
analysis of intertemporal models inherits most of the tractability found in a finite
setting. However, the passage to an infinite dimensional setting raises additional
questions. These questions concern both the extension of the Lagrangean in
an infinite dimensional setting as well as the representation of the Lagrange
multipliers as a summable sequence.

Previous work addressing existence of competitive equilibrium in intertem-
poral models attacks the problem of existence from an abstract point of view.
Following the early work of Peleg and Yaari (1970), this approach is based on
separation arguments applied to arbitrary vector spaces (see Bewley (1972), Be-
wley (1982), Aliprantis, et al. (1990), Dana and Le Van (1991)). The advantage
of this approach is that it yields general results capable of application in a wide
variety of models. However, it requires a high level of abstraction and some
strong assumptions.

Le Van and Vailakis (2004) in order to prove the existence of competitive
equilibrium in a model with a representative agent and elastic labor supply im-
pose relatively strong assumptions.1 In this paper, the existence of equilibrium
cannot be established by using marginal utilities since we may have boundary
solutions.

Recently, Le Van, et al. (2007) extended the canonical representative agent
Ramsey model to include heterogeneous agents and elastic labor supply and
supermodularity is used to establish the convergence of optimal paths. The
novelty in their work is that relatively impatient consumers have their con-
sumption and leisure converging to zero and any Pareto optimal capital path
converges to a limit point as time tends towards infinity. However, if the limit

1They assumed
u(ε,ε)
ε
→ +∞ as ε → 0 for showing ct > 0, lt > 0 and ucc

uc
≤ ucl

ul
for the

proof of kt > 0 for all t.
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points of the Pareto optimal capital paths are not bounded away from zero,
then their convergence results do not ensure existence of equilibrium.

To obtain the convergence results, they impose strong assumptions which
are not used in our paper.2 Following the Negishi approach (1960), our strat-
egy for tackling the question of existence relies on exploiting the link between
Pareto-optima and competitive equilibria. We show that there exist Lagrange
multipliers which can be used as a price system such that together with the
Pareto-optimal solution they constitute an equilibrium with transfers. These
transfers depend on the individual weights involved in the social welfare func-
tion. An equilibrium exists provided that there is a set of welfare weights such
that the corresponding transfers equal zero. We prove existence of equilibrium
without assuming, as in Bewley (1972), that any consumer i has at each t an
endowment ωit ≥ 0 which satisfies

∑m
i=1 ω

i
t ∈ int `∞+ . The model in which we

establish existence is with complete contingent commodity Arrow-Debreu mar-
kets (as opposed to trading in sequential markets) and the prices and transfers
are sufficient for decentralizing the optimal allocation. We also do not require,
with additional assumptions, as in Le Van, et al. (2007) that the optimal capital
stock converges in the long run to a strictly positive value in order to get prices
in `1+.

The organization of the paper is as follows. In section 2, we present the model
and provide sufficient conditions on the objective function and the constraint
functions so that Lagrange multipliers can be presented by an `1+ sequence. We
characterize some dynamic properties of the Pareto optimal paths of capital and
of consumption-leisure. In particular, we prove that the optimal consumption
and leisure paths of the more impatient agents will converge to zero in the long
run (see Becker (1980) for a similar result in a sequential trading model) with a
very elementary proof compared to the one in Le Van, et al. (2007) which uses
supermodularity for lattice programming. In section 3, we prove the existence
of competitive equilibrium by using the Negishi approach and the Brouwer fixed
point theorem.

2 The model

We consider an intertemporal model with m ≥ 1 consumers and one firm.
There is a single produced good in each period that is either consumed or
invested as capital. The preferences of each consumer take the additive form:∑∞
t=0 β

t
iu
i(cit, l

i
t) where βi ∈ (0, 1) is the discount factor (i = 1, . . . ,m). At

date t, consumer i consumes cit of the good, enjoys a quantity of leisure lit and
supplies a quantity of labor Lit which are normalized so that lit + Lit = 1. Pro-
duction possibilities are given by the gross production function F and a physical

2Le Van, et al. (2007) assume that the cross-partial derivative uicl has constant sign,

uic(x, x) and uil(x, x) are non-increasing in x, the production function F is homogenous of

degree α ≤ 1 and FkL ≥ 0 (Assumptions U4, F4, U5, F5).
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depreciation δ ∈ (0, 1). Denote F (kt,
∑m
i=1 L

i
t) + (1− δ)kt = f(kt,

∑m
i=1 L

i
t).

We next specify a set of restrictions on preferences and the production tech-
nology.3 The assumptions on the period utility function ui : R+ × [0, 1] → R+

are as follows:

U1: ui is continuous, concave, increasing on R+× [0, 1] and strictly increasing,
strictly concave on R++ × (0, 1).

U2: ui(0, 0) = 0.

U3: ui is twice continuously differentiable on R++× (0, 1) with partial deriva-
tives satisfying the Inada conditions: limc→0 u

i
c(c, l) = +∞, ∀l ∈ (0, 1] and

liml→0 u
i
l(c, l) = +∞, ∀c > 0.

We extend the utility functions on R2 by imposing ui(c, l) = −∞ if (c, l) ∈
R2 \ {R+ × [0, 1]}.

The assumptions on the production function F : R2
+ → R+ are as follows:

F1: F is continuous, concave, increasing on R2
+ and strictly increasing, strictly

concave on R2
++.

F2: F (0, 0) = 0.

F3: F is twice continuously differentiable on R2
++ with partial derivatives satis-

fying the Inada conditions: limk→0 Fk(k, L) = +∞, ∀L > 0, limk→+∞ Fk(k,m) <
δ and limL→0 FL(k, L) = +∞, ∀k > 0.

We extend the function F over R2 by imposing F (k, L) = −∞ if (k, L) /∈ R2
+.

For any initial condition k0 ≥ 0, when a sequence k = (k0, k1, k2, . . . , kt, . . .)
is such that 0 ≤ kt+1 ≤ f(kt,m) for all t, we say it is feasible from k0 and we
denote the class of feasible capital paths by Π(k0). Let (c1, c2, . . . , ci, . . . , cm)
where ci = (ci0, c

i
1, . . . , c

i
t, . . .) denotes the vector of consumption and

(l1, l2, . . . , li, . . . , lm) where li = (li0, l
i
1, . . . , l

i
t, . . .) the vector of leisure of all

agents. A pair of consumption-leisure sequences (ci, li) =(cit, l
i
t)
∞
t=0 is feasible

from k0 ≥ 0 if there exists a sequence k ∈ Π(k0) that satisfies ∀t,
m∑
i=1

cit + kt+1 ≤ f

(
kt,

m∑
i=1

(1− lit)

)
and 0 ≤ lit ≤ 1.

The set of feasible consumption-leisure sequences from k0 is denoted by
∑

(k0).
Assumption F3 implies that

fk(+∞,m) = Fk(+∞,m) + (1− δ) < 1,

fk(0,m) = Fk(0,m) + (1− δ) > 1.
3We relax some important assumptions in the literature. For example, Bewley (1972) as-

sumes that the production set is a convex cone (Theorem 3, page 525). He also assumes the

strictly positiveness of derivatives of utility functions on RL+ (Bewley (1982), strictly mono-

tonicity assumption, page 240). In our model, the utility functions may not be differentiable

in R+ × [0, 1] (only differentiable on R+ × (0, 1)) from which many difficulties arise when we

deal with boundary points. A function that satisfies these properties is the Cobb-Douglas

function F (x, y) = xαy1−α, α ∈ (0, 1).
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It follows that there exists k > 0 such that: (i) f(k,m) = k , (ii) k > k implies
f(k,m) < k, (iii) k < k implies f(k,m) > k. Therefore for any k ∈ Π(k0), we
have 0 ≤ kt ≤ max(k0, k). Thus, a feasible sequence k is in `∞+ which in turn
implies that any feasible sequence (c, l) belongs to `∞+ × [0, 1]∞.

In what follows, we study the Pareto optimum problem. We show that the
Lagrange multipliers are in `1+. Then these multipliers will be used to define a
price and wage system for the equilibrium.

Let ∆ = {η1, η2, . . . , ηm|ηi ≥ 0 and
∑m
i=1 ηi = 1}. Given a vector of welfare

weights η ∈ ∆, define the Pareto problem4

max
m∑
i=1

ηi

∞∑
t=0

βtiu
i(cit, l

i
t) (Q)

s.t.

m∑
i=1

cit + kt+1 ≤ f

(
kt,

m∑
i=1

(1− lit)

)
,∀t

cit ≥ 0, lit ≥ 0, lit ≤ 1, ∀i,∀t
kt ≥ 0, ∀t and k0 given.

Note that, for all k0 ≥ 0, 0 ≤ kt ≤ max(k0, k), then 0 ≤ cit ≤ f(max(k0, k),m) ≡
A, ∀t, ∀i = 1, . . . ,m. Therefore, the sequence (ui)n =

∑n
i=1 β

t
iu
i(cit, l

i
t) is in-

creasing and bounded and will converge. Thus we can write

m∑
i=1

ηi

∞∑
t=0

βtiu
i(cit, l

i
t) =

∞∑
t=0

m∑
i=1

ηiβ
t
iu
i(cit, l

i
t).

Let x = (c,k, l) ∈ (`∞+ )m × `∞+ × (`∞+ )m.
Define

F(x) = −
∞∑
t=0

m∑
i=1

ηiβ
t
iu
i(cit, l

i
t)

Φ1
t (x) =

m∑
i=1

cit + kt+1 − f

(
kt,

m∑
i=1

(1− lit)

)
Φ2i
t (x) = −cit

Φ3
t (x) = −kt

Φ4i
t (x) = −lit

Φ5i
t (x) = lit − 1

Φt = (Φ1
t ,Φ

2i
t ,Φ

3
t+1,Φ

4i
t ,Φ

5i
t ), ∀t,∀i = 1, . . . ,m.

The Pareto problem can be written as:

min F(x) (P )

4We show in Appendix A that with every Pareto optima of this economy there exists a

corresponding vector of weights η.
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s.t. Φ(x) ≤ 0, x ∈ (`∞+ )m × `∞+ × (`∞+ )m

where:

F : (`∞+ )m × `∞+ × (`∞+ )m → R ∪ {+∞}
Φ = (Φt)t=0,...,∞ : (`∞+ )m × `∞+ × (`∞+ )m → R ∪ {+∞}

Let C = dom(F) = {x ∈ (`∞+ )m × `∞+ × (`∞+ )m|F(x) < +∞}
Γ = dom(Φ) = {x ∈ (`∞+ )m × l∞+ × (`∞+ )m|Φt(x) < +∞, ∀t}.

The following theorem follows from Theorem 1 and Theorem 2 in Le Van and
Saglam (2004) (see also Dechert (1982)).

Theorem 1 Let x, y ∈ (`∞+ )m × `∞+ × (`∞+ )m, T ∈ N .

Define xTt (x,y) =

{
xt if t ≤ T
yt if t > T

Suppose that two following assumptions are satisfied:
T1: If x ∈ C, y ∈ (`∞+ )m × `∞+ × (`∞+ )mand ∀T ≥ T0, xT (x,y) ∈ C then

F(xT (x,y))→ F(x) when T →∞.
T2: If x ∈ Γ, y ∈ Γ and xT (x,y) ∈ Γ, ∀T ≥ T0,then

a) Φt(xT (x,y))→ Φt(x)as T →∞
b) ∃M s.t . ∀T ≥ T0, ‖Φt(xT (x,y))‖ ≤M
c) ∀N ≥ T0, lim

t→∞
[Φt(xT (x,y))− Φt(y)] = 0

Let x∗ be a solution to (P) and x ∈ C satisfy the Strong Slater condition:

sup
t

Φt(x) < 0.

Suppose xT (x∗,x) ∈ C ∩ Γ. Then, there exist Λ ∈ l1+\{0} such that

F(x) + ΛΦ(x) ≥ F(x∗) + ΛΦ(x∗), ∀x ∈ (`∞)m × `∞ × (`∞)m

and ΛΦ(x∗) = 0.

Obviously, for any η ∈ ∆, an optimal path will depend on η. In what fol-
lows, if possible, we will suppress η and denote by (c∗i,k∗,L∗i, l∗i) any optimal
path for each agent i. The following proposition characterizes the Lagrange
multipliers of the Pareto problem.

Proposition 1 If x∗ = (c∗i,k∗, l∗i) is a solution to the Pareto problem (Q):then
there exist ∀i = 1, . . . ,m, λ = (λ1

, λ2i, λ3, λ4i, λ5i) ∈ `1+× (`1+)m× `1+× (`1+)m×
(`1+)m, λ 6= 0 such that

∞∑
t=0

m∑
i=1

ηiβ
t
iu
i(c∗it , l

∗i
t )−

∞∑
t=0

λ1
t

(
m∑
i=1

c∗it + k∗t+1 − f(k∗t , L
∗
t )

)

+
∞∑
t=0

m∑
i=1

λ2i
t c
∗i
t

∞

+
∑
t=0

λ3
tk
∗
t

∞

+
∑
t=0

m∑
i=1

λ4i
t l
∗i
t +

∞∑
t=0

m∑
i=1

λ5i
t (1− l∗it )
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≥
∞∑
t=0

m∑
i=1

ηiβ
t
iu
i(cit, l

i
t)−

∞∑
t=0

λ1
t

(
m∑
i=1

cit + kt+1 − f(kt, Lt)

)

+
∞∑
t=0

m∑
i=1

λ2i
t c

i
t

∞

+
∑
t=0

λ3
tkt

∞

+
∑
t=0

m∑
i=1

λ4i
t l
i
t +

∞∑
t=0

m∑
i=1

λ5i
t (1− lit), (1)

λ1
t

[
m∑
i=1

c∗it + k∗t+1 − f(k∗t ,
m∑
i=1

L∗it )

]
= 0 (2)

λ2i
t c
∗i
t = 0,∀i = 1, . . . ,m (3)

λ3
tk
∗
t = 0 (4)

λ4i
t l
∗i
t = 0,∀i = 1, . . . ,m (5)

λ5i
t (1− l∗it ) = 0,∀i = 1, . . . ,m (6)

0 ∈ ηiβti∂1u
i(c∗it , l

∗i
t )− {λ1

t}+ {λ2i
t },∀i = 1, . . . ,m (7)

0 ∈ ηiβti∂2u
i(c∗it , l

∗i
t )− λ1

t∂2f(k∗t , L
∗
t ) + {λ4i

t } − {λ5i
t },∀i = 1, . . . ,m (8)

0 ∈ λ1
t∂1f(k∗t , L

∗
t ) + {λ3

t} − {λ1
t−1} (9)

where, L∗t =
∑m
i=1 L

∗i
t =

∑m
i=1(1 − l∗it ), ∂ju(c∗it , l

∗i
t ), ∂jf(k∗t , L

∗
t ) respectively

denote the projection on the jth component of the subdifferential of function u

at (c∗it , l
∗i
t ) and the function f at (k∗t , L

∗
t ).5

Proof : We show that the Strong Slater condition holds. Since fk(0,m) > 1,6

for all k0 > 0, there exists some k̂ ∈ (0, k0) such that: 0 < k̂ < f(k̂,m) and
0 < k̂ < f(k0,m). Thus, there exist two small positive numbers ε, ε1 such that:

0 < k̂ + ε < f(k̂,m− ε1) and 0 < k̂ + ε < f(k0,m− ε1).

Denote x = (c,k, l) where c = (ci)mi=1, and

ci = (ct
i)t=0,...,∞ = (

ε

m
,
ε

m
,
ε

m
, . . .)

l = (l
i
)mi=1, where

l
i

= (lt
i
)t=0,...,∞ = (

ε1
m
,
ε1
m
,
ε1
m
, . . .).

5For a concave function f defined on Rn, ∂f(x) denotes the subdifferential of f at x. We

have to write the first-order conditions by the subgradient set since at the point (0, 0), the

functions ui and f are not assumed to be differentiable.
6Assumption fk(0, 1) > 1 is equivalent to the Adequacy Assumption in Bewley (1972), see

Le Van and Dana (2003) Remark 6.1.1. This assumption is crucial to have equilibrium prices

in `1+ since it implies that the production set has an interior point. Subsequently, one can use

a separation theorem in the infinite dimensional space to derive Lagrange multipliers.
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and k = (k0, k̂, k̂, . . .). We have

Φ1
0(x) =

m∑
i=0

ci0 + k1 − f

(
k0,

m∑
i=1

(1− li0)

)
= ε+ k̂ − f(k0,m− ε1) < 0

Φ1
1(x) =

m∑
i=0

ci1 + k2 − f

(
k1,

m∑
i=1

(1− li1)

)
= ε+ k̂ − f(k̂,m− ε1) < 0

Φ1
t (x) = ε+ k̂ − f(k̂,m− ε1) < 0, ∀t ≥ 2

Φ2i
t (x) = −cti = − ε

m
< 0, ∀t ≥ 0,∀i = 1, . . . ,m

Φ3
0(x) = −k0 < 0;

Φ3
t (x) = −k̂ < 0 ∀t ≥ 1

Φ4i
t (x) = −ε1

m
< 0, ∀t ≥ 0,∀i = 1, . . . ,m

Φ5i
t (x) =

ε1
m
− 1 < 0,∀t ≥ 0,∀i = 1, . . . ,m.

Therefore, the Strong Slater condition is satisfied.
It is obvious that, ∀T, xT (x∗,x) belongs to (`∞+ )m × l∞+ × (`∞+ )m.
As in Le Van and Saglam (2004), Assumption T2 is satisfied. We now check

Assumption T1.
For any x̃ ∈ C, ˜̃x ∈ (`∞+ )m × `∞+ × (`∞+ )m such that for any T, xT (x̃, ˜̃x) ∈ C

we have

F(xT (x̃, ˜̃x)) = −
T∑
t=0

m∑
i=1

ηiβ
t
iu
i(c̃it, l̃it)−

∞∑
t=T+1

m∑
i=1

ηiβ
t
iu
i(
˜̃
cit,
˜̃
lit).

As ˜̃x ∈ (`∞+ )m × `∞+ × (`∞+ )m, sup
t
| ˜̃ct| < +∞ , there exists A > 0,∀t, such that

| ˜̃ct| ≤ A. Since βi ∈ (0, 1), as T →∞ we have

0 ≤
∞∑

t=T+1

m∑
i=1

ηiβ
t
iu
i(
˜̃
cit,
˜̃
lit) ≤ u(A, 1)

∞∑
t=T+1

m∑
i=1

ηiβ
t
i = u(A, 1)

m∑
i=1

∞∑
t=T+1

ηiβ
t
i → 0

where u(A, 1) = max{ui(A, 1), i = 1, . . . ,m}. Hence, F(xT (x̃, ˜̃x)) → F(x̃)
when T →∞. Taking account of the Theorem 1, we get (1)-(6).

Obviously, ∩mi=1ri(dom(ui)) 6= ∅ where ri(dom(ui)) is the relative interior of
dom(ui). It follows from the Proposition 6.5.5 in Florenzano and Le Van (2001),
we have

∂

m∑
i=1

ηiβ
t
iu
i(c∗it , l

∗i
t ) = ηiβ

t
i

m∑
i=1

∂ui(c∗it , l
∗i
t ).

We then get (7)-(9) as the Kuhn-Tucker first-order conditions.

Remark 1 1. It is easy to prove that ηi = 0⇒ c∗it = 0, l∗it = 0, ∀t.
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2. For any optimal solution (c∗i,k∗, l∗i), we have for any t, any i, ∂1u
i(c∗it , l

∗i
t ) 6=

∅, ∂2u
i(c∗it , l

∗i
t ) 6= ∅, ∂1f(k∗t , L

∗
t ) 6= ∅, ∂2f(k∗t , L

∗
t ) 6= ∅, where L∗t =

m−
∑
i l
∗i
t .

3. We have c∗it > 0 iff l∗it > 0. In this case, ∂1u
i(c∗it , l

∗i
t ) = {uic(c∗it , l∗it )}, ∂2u

i(c∗it , l
∗i
t ) =

{uil(c∗it , l∗it )}.

4. For any k0 > 0, there exists t with
∑
i c
∗i
t > 0 and hence

∑
i l
∗i
t > 0 (if

not, the value of the Pareto problem is null which is a contradiction).

In the following proposition, we will prove the positiveness of the optimal
capital path.

Proposition 2 If k0 > 0, the optimal capital path satisfies k∗t > 0,∀t.

Proof : Let k0 > 0 but assume that k∗1 = 0. From (9), L∗1 = 0. This implies∑
i c
∗i
1 = 0 and l∗i1 = 1,∀i: a contradiction with (7). Hence k∗1 > 0. By

induction, k∗t > 0,∀t > 0.

Remark 2 From (9) and Proposition 2, if k0 > 0, we have L∗t > 0 for any
t ≥ 0. Hence, for any t ≥ 0, ∂1f(k∗t , L

∗
t ) = {fk(k∗t , L

∗
t )}, ∂2f(k∗t , L

∗
t ) =

{fL(k∗t , L
∗
t )}.

Proposition 3 Let k0 > 0.
(a) With any η ∈ ∆, there exists a unique solution to the Pareto problem(
(c∗i), (l∗i),k∗

)
. We have: For any t ≥ 0,

λ1
t (η) ∈ ∩i∈I ηiβti∂1u

i(c∗it , l
∗i
t ) (10)

λ1
t (η)fL(k∗t , L

∗
t ) ∈ ∩i∈I ηiβti∂2u

i(c∗it , l
∗i
t ) (11)

and for any t ≥ 1,

0 ∈ λ1
t (η)∂1f(k∗t , L

∗
t )− λ1

t−1(η) (12)

(b) Conversely, if the sequences c∗i, l∗i,k∗,L∗ satisfy

L∗t =
∑
i

(1− l∗it ), ∀t ≥ 0∑
i

c∗it = f(k∗t , L
∗
t )− k∗t+1, ∀t ≥ 0

k∗0 = k0

and if there exists λ1 ∈ `1+ which satisfies (10), (11) and (12), then c∗i, l∗i,k∗

solve the Pareto problem with weights η and λ1 is an associated multiplier.
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Proof : (a) For any ct ≥ 0, we have

ηiβ
t
iu
i(c∗it , l

∗i
t )− ηiβtiui(ct, l∗it ) ≥ (λ1

t − λ2i
t )(c∗it − ct)

≥ λ1
t (c
∗i
t − ct) + λ2i

t ct ≥ λ1
t (c
∗i
t − ct).

If ct < 0, then ui(ct, l∗it ) = −∞, and the inequality still holds. Thus, λ1
t (η) ∈

ηiβ
t
i∂1u

i(c∗it , l
∗i
t ), ∀i.

Similarly, we can prove λ1
t (η)fL(k∗t , L

∗
t ) ∈ ∩i∈I ηiβti∂2u

i(c∗it , l
∗i
t ).

We have from (9),

λ1
t (η) [f(k∗t , L

∗
t )− f(k, L∗t )] ≥ [λ1

t−1 − λ3
t ](k

∗
t − k)

≥ λ1
t−1(k∗t − k) + λ3

tk ≥ λ1
t−1(k∗t − k), if k ≥ 0.

If k < 0, then f(k, L) = −∞ and the inequality still holds.
(b) The proof is easy.

Proposition 4 Let k0 > 0. Then there exists a unique multiplier λ1 ∈ `1.

Proof : Existence has been proven. Let us prove uniqueness. First observe
that, from Remark 2, we have ∂1f(k∗t , L

∗
t ) = {fk(k∗t , L

∗
t )}, ∂2f(k∗t , L

∗
t ) =

{fL(k∗t , L
∗
t )}, for every t. We have three cases.

1. If for any t,
∑
i c
∗i
t > 0, then λ1

t (η) = ηjβ
t
ju
j(c∗jt , l

∗j
t ) with c∗jt > 0.

2. Since k0 > 0 there exists t with
∑
i c
∗i
t > 0.

(a) When
∑
i c
∗i
0 > 0, let T be the first date where

∑
i c
∗i
T = 0 (and hence∑

i l
∗i
T = 0). From t = 0 to t = T − 1, λ1

t (η) is uniquely determined.
We have, from (12), λ1

T (η)fk(k∗T ,m) = λ1
T−1(η) and λ1

T (η) is uniquely
determined. But we also have λ1

T+1(η)fk(k∗T+1, L
∗
T+1) = λ1

T (η) and
λ1
T+1(η) is uniquely determined. By induction, the result holds for

every t.

(b) When
∑
i c
∗i
0 = 0, let T be the first date where

∑
i c
∗i
T > 0. In

this case, λ1
T (η) = ηjβ

t
ju
j
c(c
∗j
T , l
∗j
T ) with c∗jt > 0. We have, from (12),

λ1
T (η)fk(k∗T , L

∗
T ) = λ1

T−1(η) and λ1
T−1(η) is uniquely determined. By

backward induction λ1
t (η) is uniquely determined from 0 to T−1. We

also have λ1
T+1(η)fk(k∗T+1, L

∗
T+1) = λ1

T (η) and λ1
T+1(η) is uniquely

determined. By forward induction, the result holds for every t ≥
T + 1.

Let us denote I = {i |ηi > 0}, β = max{βi|i ∈ I}, I1 = {i ∈ I | βi = β} and
I2 = {i ∈ I | βi < β}.

9



We now show that the consumption and leisure paths of all agents with a
discount factor less than the maximum one converge to zero. The proof is very
simple compared to the one in Le Van, et al. (2007) which uses the supermodular
structure inspired by lattice programming.

Proposition 5 If (k∗, c∗i, l∗i) denotes the optimal path starting from k0, then
∀i ∈ I2, c∗it −→ 0 and l∗it −→ 0.

Proof : Consider problem Rt

Vt(kt, kt+1) = max
m∑
i=1

ηiβ
t
iu
i(cit, l

i
t)

s.t.
m∑
i=1

cit + kt+1 ≤ F

(
kt,

m∑
i=1

(1− lit)

)
+ (1− δ)kt.

It is easy to see that the Pareto problem is equivalent to

max
∞∑
t=0

Vt(kt, kt+1)

s.t. 0 ≤ kt+1 ≤ F (kt,m) + (1− δ)kt, ∀t ≥ 0

k0 is given.

Observe that

Vt(kt, kt+1) = βt max
m∑
i=1

ηi

(
βi
β

)t
ui(cit, l

i
t)

s.t.
m∑
i=1

cit + kt+1 ≤ F

(
kt,

m∑
i=1

(1− lit)

)
+ (1− δ)kt.

Denote Zt =
(
ηi(βi

β )t
)

. From the Berge Maximum Theorem (1959), the
strict concavity and the increasingness of the utility functions, the optimal
c∗i, l∗i are continuous with respect to (Zt, kt, kt+1). Denote these functions by(
Γi(Zt, k∗t , k

∗
t+1),Λi(Zt, k∗t , k

∗
t+1)

)
i
. Let κ∗, ξ∗ denote the limit points of k∗t , k

∗
t+1

when t→ +∞. Then, for i ∈ I2, Γi(Zt, k∗t , k
∗
t+1) converges to Γi(0I2 , (ηi)i∈I2 , κ

∗, ξ∗) =
0, and Λi(Zt, k∗t , k

∗
t+1) converges to Λi(0I2 , (ηi)i∈I2 , κ

∗, ξ∗) = 0.

3 Existence of competitive equilibrium

We now give the characterization of the competitive equilibrium. For each
consumer i, let αi > 0 denote the share of the profit of the firm which is owned
by consumer i. We have

∑m
i=1 α

i = 1. Let ϑi > 0 be the share of the initial
endowment owned by consumer i. Obviously,

∑m
i=1 ϑ

i = 1. Clearly, ϑi k0 is the
endowment of consumer i.

10



Definition 1 Let k0 > 0. A competitive equilibrium for this model consists of
a sequence of prices p∗ = (p∗t )

∞
t=0 for the consumption good, a wage sequence

w∗ = (w∗t )∞t=0 for labor, a price r for the initial capital stock k0 and an allocation
{c∗i,k∗, l∗i,L∗i} such that

i)

c∗ ∈ `∞+ , l
∗i ∈ `∞+ ,L∗i ∈ `∞+ ,k∗ ∈ `∞+ ,

p∗ ∈ `1+\{0},w∗ ∈ `1+\{0}, r > 0.

ii) For every i, (c∗i, l∗i) is a solution to the problem

max
∑∞
t=0 β

t
iu
i(cit, l

i
t)

s.t
∑∞
t=0 p

∗
t c
i
t +
∑∞
t=0 w

∗
t l
i
t ≤

∑∞
t=0 w

∗
t+ϑirk0 + αiπ∗

where π∗ is the maximum profit of the single firm.
iii) (k∗,L∗) is a solution to the firm’s problem

π∗ = max
∞∑
t=0

p∗t [f(kt, Lt)− kt+1]−
∞∑
t=0

w∗tLt − rk0

st 0 ≤ kt+1 ≤ f(kt, Lt), 0 ≤ Lt,∀t

iv) Markets clear: ∀t,

m∑
t=1

c∗it + k∗t+1 = f

(
k∗t ,

m∑
i=1

L∗it

)
,

l∗it + L∗it = 1, L∗t =
m∑
i=1

Li
∗

t and k∗0 = k0.

We have proved that there exist Lagrange multipliers

λ(η) = (λ1(η), λ2i(η), λ3(η), λ4i(η), λ5i(η))

∈ l1+ × (l1+)m × l1+ × (l1+)m × (l1+)m, i = 1...m,

for the Pareto problem. In what follow, we will prove that, with given (c∗,
k∗, l∗,L∗), one can associate a sequence of prices, (p∗t )

∞
t=0, and a sequence of

wages, (w∗t )∞t=0, defined as

p∗t = λ1
t ∀t

w∗t = λ1
tfL(k∗t , L

∗
t ) ∀t

where fL(k∗t , L
∗
t ) ∈ ∂2f(k∗t , L

∗
t ), and a price r > 0 for the initial capital stock

k0 such that (c∗,k∗, l∗,L∗,p∗,w∗, r) is a price equilibrium with transfers (see
Definition 2 below). The appropriate transfer to each consumer is the amount

11



that just allows the consumer to afford the consumption stream allocated by
the social optimization problem. Thus, for given weight η ∈ ∆, the required
transfers are:

φi(η) =
∞∑
t=0

p∗t (η)ci∗t (η) +
∞∑
t=0

w∗t (η)li∗t (η)−
∞∑
t=0

w∗t (η)−ϑirk0 − αiπ∗(η)

where

π∗(η) =
∞∑
t=0

p∗t (η)[f(k∗t (η), L∗t (η))− k∗t+1(η)]−
∞∑
t=0

w∗t (η)L∗t (η)− rk0.

According to the Negishi approach, a competitive equilibrium for this economy
corresponds to a set of welfare weights η ∈ ∆ such that these transfers equal to
zero. Now we define an equilibrium with transfers.

Definition 2 A given allocation {c∗i,k∗, l∗i,L∗i}, together with a price se-
quence p∗ for consumption good, a wage sequence w∗ for labor and a price
r for the initial capital stock k0 constitute an equilibrium with transfers if

i)

c∗ ∈ (`∞+ )m, l∗ ∈ (`∞+ )m,L∗ ∈ (`∞+ )m,k∗ ∈ `∞+ ,
p∗ ∈ `1+\{0},w∗ ∈ `1+\{0}, r > 0

ii) For every i = 1, . . . ,m, (c∗i, l∗i) is a solution to the problem

max
∞∑
t=0

βtiu
i(cit, l

i
t)

st

∞∑
t=0

p∗t c
i
t +

∞∑
t=0

w∗t l
i
t ≤

∞∑
t=0

p∗t c
∗i
t +

∞∑
t=0

w∗t l
∗i
t

iii) (k∗,L∗) is a solution to the firm’s problem:

π∗ = max
∞∑
t=0

p∗t [f(kt, Lt)− kt+1]−
∞∑
t=0

w∗tLt − rk0

s.t . 0 ≤ kt+1 ≤ f(kt, Lt), 0 ≤ Lt,∀t

iv) Markets clear

m∑
i=1

c∗it + k∗t+1 = f

(
k∗t ,

m∑
i=1

L∗it

)
, ∀t,

L∗t =
m∑
i=1

L∗it , l
∗i
t = 1− L∗it and k∗0 = k0.

The difference between two definition - competitive equilibrium and price
equilibrium with transfers - are the budget constraints of consumers. If the

12



transfers φi(η) = 0 for all i, a price equilibrium with transfers is a competitive
equilibrium.

Before proving existence of an equilibrium, we will first prove that any solu-
tion to the Pareto problem, x∗ = (c∗i,k∗, l∗i), associated with k0 > 0 and η ∈ ∆
is an equilibrium with transfers, with some appropriate prices (p∗t ) ∈ `1+ \ {0}
and wages (w∗t ) ∈ `1+ \ {0}.

The following result is required.

Proposition 6 Let k0 > 0.
1. For any ε > 0, there exists T such that, for any η ∈ ∆,

+∞∑
T

λ1
t(η)

∑
i

c∗it ≤ ε

+∞∑
T

λ1
t(η)fL(k∗t , L

∗
t )
∑
i

l∗it ≤ ε

+∞∑
T

λ1
t(η)fL(k∗t , L

∗
t ) ≤ ε.

2. There exists M such that, for any η ∈ ∆,

+∞∑
t=0

λ1
t(η)

∑
i

c∗it ≤ M

+∞∑
t=0

λ1
t(η)fL(k∗t , L

∗
t )
∑
i

l∗it ≤ M

+∞∑
t=0

λ1
t(η)fL(k∗t , L

∗
t ) ≤ M.

Proof : 1. We know that there exists A such that c∗it (η) ≤ A, ∀t, ∀i, ∀η ∈ ∆.
Therefore

βT

1− β
∑
i

ui(A, 1) ≥
+∞∑
T

∑
i

ηiβ
t
i [u

i(c∗it , l
∗i
t )− ui(0, 0)]

≥
+∞∑
T

λ1
t

∑
i

c∗it +
+∞∑
T

λ1
tfL(k∗t , L

∗
t )
∑
i

l∗it .

Let ε > 0. There exists T such that βT

1−β ≤ ε. Hence,
∑+∞
T λ1

t(η)
∑
i c
∗i
t ≤ ε,∑+∞

T λ1
t(η)fL(k∗t , L

∗
t )
∑
i l
∗i
t ≤ ε, for any η.

We now prove that for T large enough,
∑+∞
T λ1

t(η)fL(k∗t , L
∗
t ) ≤ ε for any

η. We have ∑
i

c∗it = f(k∗t , L
∗
t )− k∗t+1.

Since

f(k∗t , L
∗
t ) = f(k∗t , L

∗
t )− f(0, 0) ≥ fk(k∗t , L

∗
t )k
∗
t + fL(k∗t , L

∗
t )L
∗
t ,
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we obtain by using (9):

T+τ∑
t=T

λ1
t

∑
i

c∗it ≥ λ1
T fk(k∗T , L

∗
T )k∗T − λ1

T+τk
∗
T+τ+1 +

T+τ∑
t=T

λ1
tfL(k∗t , L

∗
t )L
∗
t .

Let τ → +∞. Since λ1 ∈ l1, and k∗t ≤ max{k0, k̄},∀t, we have

+∞∑
t=T

λ1
t

∑
i

c∗it ≥ λ1
T fk(k∗T , L

∗
T )k∗T +

+∞∑
t=T

λ1
tfL(k∗t , L

∗
t )L
∗
t

≥
+∞∑
t=T

λ1
tfL(k∗t , L

∗
t )L
∗
t =

+∞∑
t=T

λ1
tfL(k∗t , L

∗
t )(m−

∑
i

l∗it )(13)

Hence, for T large enough,

m

+∞∑
t=T

λ1
tfL(k∗t , L

∗
t ) ≤

+∞∑
t=T

λ1
t

∑
i

c∗it +
+∞∑
t=T

λ1
tfL(k∗t , L

∗
t )
∑
i

l∗it ≤ ε

for any η.
2. Obviously:

+∞∑
0

λ1
t

∑
i

c∗it +
+∞∑
0

λ1
tfL(k∗t , L

∗
t )
∑
i

l∗it ≤ M1 =
1

1− β
∑
i

ui(A, 1) (14)

+∞∑
t=0

λ1
tfL(k∗t , L

∗
t ) ≤ M2 =

2
m
× 1

1− β
∑
i

ui(A, 1).

Proposition 7 Let k0 > 0. Let (k∗, c∗,L∗, l∗) solve the Pareto problem asso-
ciated with η ∈ ∆. Take

p∗t = λ1
t , w

∗
t = λ1

tfL(k∗t , L
∗
t ) for any t

and r = λ1
0[Fk(k0, 0) + 1− δ].

Then {c∗,k∗,L∗,p∗,w∗, r} is an equilibrium with transfers.

Proof :
i) We have

c∗ ∈ (`∞+ )m, l∗ ∈ (`∞+ )m,k∗ ∈ `∞+ ,p∗ ∈ `1+,w∗ ∈ `1+.

From Remark 1 statement 4, p∗ 6= 0, and together with Remark 2, w∗ 6= 0.
ii) We now show that (c∗i, l∗i) solves the consumer’s problem. Let (ci, li)

satisfy
∞∑
t=0

p∗t c
i
t +

∞∑
t=0

w∗t l
i
t ≤

∞∑
t=0

p∗t c
∗i
t +

∞∑
t=0

w∗t l
∗i
t .
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By the concavity of ui, we have:

∆ =
∞∑
t=0

βtiu
i(c∗it , l

∗i
t )−

∞∑
t=0

βtiu
i(cit, l

i
t)

≥
∞∑
t=0

βtiu
i
c(c
∗i
t , l
∗i
t )(c∗it − cit) +

∞∑
t=0

βtiu
i
l(c
∗i
t , l
∗i
t ) (l∗it − lit).

Combining (3) and (6) yields

∆ ≥
∞∑
t=0

(λ1
t − λ2i

t )
ηi

(c∗it − cit) +
∞∑
t=0

(λ1
tfL(k∗t , L

∗
t )− λ4i

t + λ5i
t )

ηi
(l∗it − lit)

≥
∞∑
t=0

λ1
t

ηi
(c∗it − cit) +

∞∑
t=0

λ1
tfL(k∗t , L

∗
t )

ηi
(l∗it − lit) +

∞∑
t=0

λ5i
t (1− lit)
ηi

≥
∞∑
t=0

λ1
t

ηi
(c∗it − cit) +

∞∑
t=0

λ1
tfL(k∗t , L

∗
t )

ηi
(l∗it − lit)

=
∞∑
t=0

p∗t
ηi

(c∗it − cit) +
∞∑
t=0

w∗t
ηi

(l∗it − lit) ≥ 0.

This means (c∗i, l∗i) solves the consumer’s problem.
iii) We now show that (k∗,L∗) is solution to the firm’s problem. Since

p∗t = λ1
t , w

∗
t = λ1

tfL(k∗t , L
∗
t ), we have

π∗ =
∞∑
t=0

λ1
t [f(k∗t , L

∗
t )− k∗t+1]−

∞∑
t=0

λ1
tfL(k∗t , L

∗
t ) L

∗
t − rk0.

Let :

∆T =
T∑
t=0

λ1
t [f(k∗t , L

∗
t )− k∗t+1]−

T∑
t=0

λ1
tfL(k∗t , L

∗
t ) L

∗
t − rk0

−

(
T∑
t=0

λ1
t [f(kt, Lt)− kt+1]−

T∑
t=0

λ1
tfL(k∗t , L

∗
t )Lt − rk0

)
By the concavity of f , we get

∆T ≥
T∑
t=1

λ1
tfk(k∗t , L

∗
t )(k

∗
t − kt)−

T∑
t=0

λ1
t (k
∗
t+1 − kt+1)

= [λ1
1fk(k∗1 , L

∗
1)− λ1

0](k∗1 − k1) + . . .

+[λ1
T fk(k∗T , L

∗
T )− λ1

T−1](k∗T − kT )− λ1
T (k∗T+1 − kT+1).

By (4) and (9), we have: ∀t = 1, 2, . . . , T

[λ1
tfk(k∗t , L

∗
t )− λ1

t−1](k∗t − kt)

= −λ3
t (k
∗
t − kt) = λ3

tkt ≥ 0.
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Thus,

∆T ≥ −λ1
T (k∗T+1 − kT+1) = −λ1

T k
∗
T+1 + λ1

T kT+1 ≥ −λ1
T k
∗
T+1.

Since λ1 ∈ l1+, sup
T
k∗T+1 < +∞, we have

lim
T→+∞

∆T ≥ lim
T→+∞

− λ1
T k
∗
T+1 = 0.

We have proved that the sequences (k∗,L∗) maximize the profit of the firm.
Finally, the market is cleared by the strict increasingness of the utility func-

tions.

Let k0 > 0. From Proposition 4, we define the following mapping

φi(η) =
∞∑
t=0

p∗t (η)c∗it (η) +
∞∑
t=0

w∗t (η)l∗it (η)−
∞∑
t=0

w∗t (η)−ϑirk0 − αiπ∗(η)

where

p∗t = λ1
t , w

∗
t = λ1

tfL(k∗t , L
∗
t ),∀t

π∗(η) =
∞∑
t=0

p∗t (η)[f(k∗t (η), L∗t (η))− k∗t+1(η)]−
∞∑
t=0

w∗t (η)L∗t (η)− rk0.

This mapping φi is uniformly bounded (see Proposition 6, statement 2).

Proposition 8 i) Let k0 > 0. Then for any η ∈ ∆, π∗(η) ≥ 0.
ii) If ηi = 0 then ∀t, c∗it = 0, l∗it = 0 and φi(η) < 0.

Proof : i) Let (k0, 0, 0, . . .) ∈ Π(k0). Then

π∗(η) ≥ λ1
0(η)[F (k0, 0) + (1− δ)k0]− rk0

= λ1
0(η)[F (k0, 0) + (1− δ)k0]− λ1

0(η)[Fk(k0, 0) + 1− δ]k0

≥ 0.

ii) Let ηi = 0. From Remark 1, c∗it = l∗it = 0, ∀t. Now, we have

φi(η) =
∞∑
t=0

p∗t (η)c∗it (η) +
∞∑
t=0

w∗t (η)l∗it (η)−
∞∑
t=0

w∗t (η)−ϑirk0 − αiπ∗(η)

= −
∞∑
t=0

w∗t (η)−ϑirk0 − αiπ∗(η) ≤ −
∞∑
t=0

w∗t (η) < 0, since w∗ ∈ l1+ \ {0}.

We can now state our main result.

Theorem 2 Assume U1, U2, U3, F1, F2, F3. Let k0 > 0. Then there
exists η ∈ ∆, η >> 0, such that φi(η) = 0,∀i . This means there exists a
competitive equilibrium.
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Proof : We first prove that φi is continuous for any i. Let (ηn)→ η. Since,

c∗it (ηn)→ c∗it (η), l∗it (ηn)→ l∗it (η), k∗t (ηn)→ k∗t (η),

and if
∑
j c
∗j
t (η) > 0 then p∗t (η

n) → p∗t (η), w∗t (ηn) → w∗t (η). It remains to be
proven that p∗t (η

n)→ p∗t (η), w∗t (ηn)→ w∗t (η) even
∑
j c
∗j
t (η) = 0. Let T = {t :∑

j c
∗j
t (η) = 0}. From the proof in Proposition 6, there exists M such that for

any η ∈ ∆,
+∞∑
t=0

w∗t (η) =
+∞∑
t=0

λ1
t(η)fL(k∗t , L

∗
t ) ≤M

and for any ε > 0, there exists T0 such that, for any η ∈ ∆, for any T ≥ T0,

+∞∑
T

w∗t (η) =
+∞∑
T

λ1
t(η)fL(k∗t , L

∗
t ) ≤ ε

These inequalities show that {w∗(ηn)} is in a relatively compact set of `1. We
can assume that it converges to (w̄t) ∈ `1. From (12), for t ∈ T , λ1

t (η
n)→ λ̄1

t =
w̄t

fL(k∗t ,m)
.

When
∑
j c
∗j
0 (η) > 0, consider T , the first date where

∑
j c
∗j
T (η) = 0. For

t = 0, . . . , T − 1, we have λ1
t (η

n) → λ1
t (η). Since λ1

T (ηn)fL(k∗T (ηn), L∗t (η
n)) =

λ1
T−1(ηn), we have λ̄1

tfL(k∗T (η),m) = λ1
T−1(η). ¿From Proposition 4, and rela-

tion (12), we have λ̄1
T = λ1

T (η). In other words, λ1
T (ηn)→ λ1

T (η). By induction,
λ1
t (η

n)→ λ1
t (η) for any t ≥ T .

Use the same arguments to prove that λ1
t (η

n) → λ1
t (η) for any t, when∑

j c
∗j
0 (η) = 0.

From these results we get w̄t = w∗t (η) for any t.
It follows from (13) and (14) in Proposition 6 that for any η ∈ ∆, any T

βT

1− β
∑
i

ui(A, 1) ≥
+∞∑
t=T

λ1
t

∑
i

c∗it ≥
+∞∑
T

λ1
tfL(k∗t , L

∗
t )L
∗
t

or

2βT

1− β
∑
i

ui(A, 1) ≥
+∞∑
t=T

λ1
t

∑
i

(
c∗it + fL(k∗t , L

∗
t )l
∗i
t

)
≥ m

+∞∑
T

λ1
tfL(k∗t , L

∗
t ) (15)

Let ε > 0. From inequality (15), there exists T such that for any n we have:

|
∑
t≥T

p∗t (η
n)c∗it (ηn) +

∑
t≥T

w∗t (ηn)l∗it (ηn)

−
∑
t≥T

w∗t (ηn)−ϑirk0 − αi
∑
t≥T

p∗t (η
n)
∑
i

c∗it (ηn)

−
∑
t≥T

w∗t (ηn)(m−
∑
i

l∗it (ηn))− rk0| ≤ ε
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and

|
∑
t≥T

p∗t (η)c∗it (η) +
∑
t≥T

w∗t (η)l∗it (η)

−
∑
t≥T

w∗t(η)−ϑir∗(η)k0 − αi
∑
t≥T

p∗t(η)
∑
i

c∗it (η)

−
∑
t≥T

w∗t(η)(m−
∑
i

l∗it (η))− r∗(η)k0| ≤ ε

Consider t ∈ {0, . . . , T − 1}. One has: p∗t (η
n) → p∗t(η), w∗t (ηn) → w∗t (η),

c∗it (ηn) → c∗it (η), l∗it (ηn) → l∗it (η), k∗t (ηn) → k∗t (η). Thus, for n large enough,
we have |φi(ηn)− φi(η)| ≤ 3ε. The proof that φi is continuous is complete.

Observe that
∑
i φi(η) = 0 for any η by Walras Law. Let us define Ψ : ∆→∆,

Ψ(η) = (Ψ1(η),Ψ2(η), . . . ,Ψm(η)) where Ψi(η) is given by

Ψi(η) =
ηi + φ

′

i(η)
1 +

∑m
i=1 φ

′
i(η)

with φ
′

i(η) = −φi(η) if φi(η) < 0, and φ
′

i(η) = 0 if φi(η) ≥ 0. Ψ is a continuous
mapping from the simplex into itself. By the Brouwer fixed point theorem, there
exists η ∈ ∆ such that Ψ(η) = η. We have

ηi =
λi + φ

′

i(η)
1 +

∑m
i=1 φ

′
i(η)

⇔ ηi

m∑
i=1

φ
′

i(η) = φ
′

i(η) (16)

If ηi = 0, Proposition 8 (ii) implies that φi(ηi) < 0 and φ
′

i(η) > 0 - a contradic-

tion with (16). Thus, ηi > 0, ∀i. If
m∑
i=1

φ
′

i(η) > 0, then φ
′

i(η) > 0, ∀i. From the

definition of φ
′

i(η) this implies φi(η) < 0, ∀i. But this contradicts the Walras

Law which says
m∑
i=1

φi(η) = 0. Thus,
m∑
i=1

φ
′

i(η) = 0 which implies φ
′

i(η) = 0, ∀i.

But in this case we have φi(η) ≥ 0, ∀i. From the Walras Law we have φi(η) = 0,
∀i.

Remark 3 Here, existence of equilibrium is obtained without assuming, as in
Bewley (1972), that any consumer i has at each t an endowment ωit ≥ 0 which
satisfies

∑m
i=1 ω

i
t ∈ int `∞+

4 Appendix A

Proposition 9 Assume k0 > 0. If (c̄i, l̄i) is a Pareto optimum if and only if
there exists η ∈ ∆such that (c̄i, l̄i) solves the problem max

∑
i ηi
∑+∞
t=0 β

t
iu
i(cil, l

i
t)

in the feasible set from k0.

Proof : Let U i(ci, li) =
∑+∞
t=0 β

t
iu
i(cil, l

i
t). Let Σ(k0) denote the feasible set of

the consumption and leisure sequences from k0. Σ(k0) is compact, convex for
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the product topology. Let U be

U = {z ∈ Rm+ : ∃(ci, li) ∈ Σ(k0),∀i, zi ≤ U i(ci, li)}

Since the functions ui, F are continuous in the positive orthants, the functions
U i are continuous on the feasible set for the product topology. Therefore, the
set U is convex, compact in Rm+ . Let (c̄i, l̄i) be a Pareto optimum allocation,
ζi = U i(c̄i, l̄i) and B = {(ζi)+Rm++}. We have B∩U = ∅. From the Separation
Theorem, there exists (η1, . . . , ηm) ∈ Rm \ {0} such that

η1z1 + . . .+ ηmzm ≤ η1(ζ1 + r1) + . . .+ ηm(ζm + rm)

for any (zi) ∈ U , any r = (r1, . . . , rm) >> 0. Take zi = ζi, ∀i, ri = 1 and
let rj(j 6= i) go to zero. We get ηi ≥ 0. That means η ∈ Rm+ \ {0}. We can
normalize η ∈ ∆. Now, if (ci, li) is feasible then∑

i

ηiU
i(ci, li) ≤

∑
i

ηiU
i(c̄i, l̄i) + η1r1 + . . .+ ηmrm

for r >> 0. Letting r go to zero, we get∑
i

ηiU
i(ci, li) ≤

∑
i

ηiU
i(c̄i, l̄i)

Conversely, if (c̄i, l̄i) solves

max
m∑
i=1

ηi

∞∑
t=0

βtiu
i(cit, l

i
t)

in the feasible set from k0, it is only a weak Pareto optimum. If η >> 0 or if
the solution is unique for any η ∈ ∆, which is the case in our model, then it is
a Pareto optimum.
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