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1. INTRODUCTION

Malthusian stagnation — an explosive population and increasing scarcity of natural
resources — has been the motivation behind numerous simulation studies that culminated
in the publication by The Club of Rome a popular book entitled “The Limits to Growth,”
authored by Meadow et. al. (1972), a team of leading MIT engineers. At first, academic
economists objected to the trend projections used to simulate the future, arguing that
human beings act rationally in the face of resource scarcity, and will solve the
overpopulation problem by making the number of offspring part of the economic
decision. Not long after the publication of this unpleasant prophecy, the oil crisis in the
beginning of the 70’s rang the alarm, calling for further inquiries on a problem that seems
to be real, and, therefore, cannot be disregarded cavalierly.

While the role of exhaustible resources in economic growth has almost then been
thoroughly explored (see the well-known Review of Economic Studies 1974
Symposium), the question of endogenous population and fertility decision has only
attracted attention — once again — more recently (see Becker and Barro (1988), Barro and
Becker (1989), Becker, Murphy, and Tamura (1990), Galor and Weil (1999, 2000),
among others). To our knowledge, a synthesis of these two strands of literature has not
been undertaken, despite the fact that such a synthesis certainly contributes to our
understanding of the real world. This is the task that we propose to accomplish.

In the first strand of literature, most of economic models considered are of the Ramsey-
Koopmans type in which the size of the population — assumed to be exogenously given —
has seldom been a concern. The basic questions addressed by this strand of the literature
are: (1) How does the market allocate an exhaustible resource stock over time, and what is
the time path of the resource price?  (ii) Is the market efficient in allocating the
exhaustible resource over time? and (iii) What are the implications of resource
exhaustibility in the context of economic growth? Some fine analyses to this panoply of
questions can be found in Dasgupta and Heal (1974, 1979). The answers to the first two
questions are that the resource price rises at the rate of return for holding assets — the so-
called Hotelling rule — and this would warrant allocation efficiency along the resource

extraction path, with the resource being depleted asymptotically. As to the third question,



whether economic growth is sustainable is the main focus. Introducing exogenous neutral
technical progress, Stiglitz (1974) found that growth is possible with a stationary
depletion policy determined by the saving rate given in the economy, even if the resource
input is essential, For the case of Cobb-Douglas production in which the resource factor
is essential, but not important (its share in the production is less than the share of labor), a
non-degenerate steady state is also possible. In general, without exogenous technical
progress, and when the resource is essential in the production process, the economy
would sink in the long run to the trivial steady state in which both the resource and the
capital stock vanish, and so does the consumption. This unpleasant outcome could only
be avoided when the exhaustible resource can be substituted for by a reproducible capital.
Also, the existence and characterization of the optimal solution have been fully analyzed
— in the setting of an optimal growth model — by Mitra (1980), and more recently by Cass
and Mitra (1991) for a wide range of technological possibilities, allowing for unbounded
consumption in the long run. For a comprehensive survey of this strand of literature, see
Krautkraemer (1998).

With respect to the second strand of the literature on economic growth in which the
size of the population is endogenous, only reproducible capital has been considered as a
factor of production besides labor. In the class of models that follow the Ramsey-Solow
tradition in which all economic decisions are conferred to a single infinitely lived agent (a
planner, or the head of a dynasty), the population size tends to a stationary level; see, for
example Razin and U Ben-Zion (1975) or Nerlove, Razin, and Sadka (1987). When
capital is human — as in Barro and Becker, op. cit. — rather than physical, the appropriate
model is of the Uzawa-Lucas variety (see Lucas (1988)). Using also the dynastic-utility
formulation, these authors showed that the economy exhibits exponential growth at a rate
equal to a positive endogenous fertility rate. Works in this direction have been carefully
surveyed in Tamura (2000). In the overlapping-generations framework, Samuelson
(1975) investigated the optimal size of the population in the long run and pointed out that
the incentive to maintain an increasing fertility rate would ultimately lead to an
inefficient allocation outcome. Erhlich and Lui (1991) further discussed this question,

and a concise literature survey was provided in Erhlich and Lui (1997).



Surprisingly, there are not many studies bringing together natural resources and
population in a comprehensive synthetic model of economic growth. Exceptions are
Nerlove, Razin, and Sadka (1986) and Eckstein, Stern, and Wolpin (1988). These papers
focused on indestructible land as a production factor. Nerlove et al. relied upon the
dynastic-utility approach to show the efficiency of the market outcome with endogenous
population, while Eckstein et al. used the overlapping-generations framework, and
demonstrated that as long as the fertility decision is taken into account, the population
growth will not be excessive; the market outcome will be efficient; and the economy will
reach a stationary long run consumption level above the Malthusian subsistence level.
The value of land depends on the time path of land per capita and, since land is fixed in
quantity, the problem of over-accumulation of capital is simply ruled out. On the other
hand, Nerlove (1993) is, to our knowledge, the only study that pieces together the use of
a renewable resource and the fertility decision. Studies linking exhaustible resources with
fertility decisions are simply non-existent; on this point, see Nerlove and Rault (1997),
and Robinson and Srinivasan (1997).

In this paper, we make use of the overlapping generations (OLG) model a la Allais-
Samuelson-Diamond tradition to formulate and analyze the relationships among
exhaustible resources, technology transition, and endogenous fertility (see
Geneakoupoulos and Polemarchakis (1991) for the present state of the art). Four classes
of economic agents co-exist in each period: a young generation, an old generation,
competitive firms producing a consumption good, and competitive firms producing
renewable energy. Renewable energy is produced by a backstop from capital, say solar
collectors, while the consumption good is produced using energy — provided by the
backstop or from a stock of fossil fuels — and labor. The consumption good can also be
used as investment goods to augment the stock of backstop capital. While oil can be
extracted at negligible cost, its ultimate stock is limited. The backstop, on the other hand,
can provide a perpetual flow of energy. However, energy produced by the backstop
requires capital, and as the stock of fossil fuels dwindles, it is imperative that backstop
capital be accumulated to avoid a drastic cut in consumption. Thus the transition from oil

to backstop becomes an interesting question.



Economic agents interact on five markets — oil, solar energy, labor, capital, and the
consumption good. The two real assets in the economy — capital and oil — represent the
only possible forms of saving, and in any period they are owned by the old generation of
that period. An individual works when she is young, and retires when she is old. She has
to allocate her wages among current consumption, raising children, and saving for old-
age consumption. The lifetime utility of a young individual depends on her current
consumption, her old-age consumption, and the number of offspring she raises, and these
variables are assumed to be separable in the lifetime utility function. Furthermore, future
utilities of consumption are discounted, and the single-period sub-utility function of
consumption is assumed to be concave, strictly increasing, and satisfy the Inada
conditions, i.e. the marginal utility of consumption tends to infinity (zero) when
consumption tends to zero (infinity). As for the sub-utility function of offspring, it is
assumed to be concave, and is strictly increasing as the number of offspring rises from 0
to a saturation level. However, unlike the single-period sub-utility function of
consumption, the marginal utility of offspring is assumed to be finite when the number of
offspring is 0. It is this assumption that gives our model a Malthusian flavor: when wages
are low, the birthrate will be almost 0.

The literature on exhaustible resources under the OLG framework is rather sparse,
maybe because studying thoroughly the extraction of exhaustible resources in this
framework is too involved. Kemp and Long (1979) and, lately, Olson and Knapp (1997)
are exceptions, Kemp and Long assumed that the resource is not essential in the
production process, and showed that in steady state the resource could be partially
depleted, inducing, therefore, a form of inefficiency in this case. On the other hand,
Olson and Knapp considered the exhaustible resource as an essential factor of production.
They established the existence of an equilibrium and provided a characterization of the
market outcome. Market efficiency in this study is warranted; however, the economy
would contract and ultimately collapse into the trivial steady state of zero output in the
limit. The convergence to this degenerate state need not be monotone, but may happen in
damped oscillations, and the pattern of resource extraction as well as the time path of the
resource price could possibly exhibit non-classical behavior. Quite recently, Agnani et

.al. (2003) extended the Olson and Knapp model by introducing exogenous technological



progress and producible capital as a factor of production together with an exhaustible
resource. With logarithmic additive utility and Cobb-Douglas production, they found that
the economy exhibits a positive steady-state growth rate if the labor share is high enough,
and this balanced growth path is efficient.

Notwithstanding the afore-mentioned works, we impose no specific functional form in
our analysis. In our model, children are treated as a consumption good, and the number of
offspring in each period is the result of the lifetime utility maximization of the young
generation of that period. Our formulation thus stands in contrast with the dynastic
formulations of Becker and Barro (1988) and Barro and Becker (1989) in which the
utility of a parent depends on her own consumption, the number of offspring she raises,
and the total utilities of all her offspring, and in which the decisions on fertility are made
at the beginning of time by the head of the dynasty. Unlike the dynastic-utility
formulation, which assumes perfect foresight on the part of the head of the dynasty and to
whom the task of inter-temporal resource planning is assigned, the overlapping-
generations model provides a decentralized setting. Our model is thus somewhat more
market oriented than the central-planning view; the latter requires perfect foresight on the
part of the head of the dynasty and a binding contract across generations. In addition to
the fact that under the OLG framework the society is composed of mortal individuals
who can trade through their lifetime, and with resource assets which may act as stores of
values for saving purpose, we claim that our modeling strategy is more appropriate. At
least, it does not go against the strong empirical evidence (see J. G. Atonji et.al. (1992))
which does not support the hypothesis that members of extended families are
altruistically linked in the way presumed by the dynastic type model.

As we have indicated earlier, if there is no possibility of substitution for an essential
exhaustible resource, say oil, used as an input in the production process, the economy
might glide to the trivial steady state of zero consumption in the long run, a regretful
doomsday. In order to reach the state of economic sustainability, the problem of
technology transition emphasizes the possibility of substituting for the exhaustible
resource with an everlasting source of energy input, say solar energy, which could be
made available through investments in the so-called backstop technology (see, for

example, Hung and Quyen (1993, 1994) for partial equilibrium analyses, and Tahvonen



and Salo (2001) in the context of economic growth). In these models, oil is used first,
with solar energy gradually being brought in to substitute for oil. By the time the oil stock
is completely depleted, the backstop capital will have reached the Golden Rule level, and
its marginal productivity is equal to the interest rate. Can these results be carried over into
a dynamic general-equilibrium framework, especially when the population is not a
datum, but endogenous in the sense that it results from fertility decisions made by
economic agents?

The introduction of endogenous fertility into an OLG model of exhaustible resources
and economic growth changes the nature of the problem of resource depletion in two
fundamental ways. First, it is not the resource scarcity in absolute terms, but the resource
scarcity per capita that matters. Although the absolute size of the remaining resource
stock necessarily declines through time due to extraction, the resource endowment per
worker might rise or decline through time, depending on the birthrates chosen by the
successive young generations, and this leads to a more general Hotelling rule which is
related to the birth rate (the biological interest rate). Second, the temporary equilibria can
no longer be computed recursively, and the existence of a competitive equilibrium
becomes problematic, especially because the market size becomes endogenous with
agent’s fertility decision. Furthermore, a birthrate that is arbitrarily close to 0 in one
period leads, in the next period, to an abundance of resource or capital endowment per
capita, and this means that many limiting arguments must be deployed to prevent the
population from collapsing in finite time.

The mechanism that operates in our model can be described as follows. In any period,
if the resource scarcity per capita — the endowments of oil plus capital per worker — are
high, the energy input per worker will be high, leading to a high wage rate. The high
wage rate in turn induces a high level of current consumption, a high level of future
consumption, and more importantly, a number of offspring close to the saturation level —
assuming that the cost in terms of real resources of raising a child is constant. The
endowments per worker in the next period, although still high, will be lower than that of
the current period. On the other hand, when the resources per capita are scarce, wages
will be low, with the ensuing consequences that current consumption, future

consumption, and fertility will also be low. In particular, if wages are extremely low,



most of the wages will be devoted to consumption, and fertility will be extremely low.
This last result follows from the assumption that the Inada conditions are imposed on the
single-period sub-utility function of consumption, but not on the sub-utility function of
offspring. Thus when the wage rate descends to a critical level, fertility will decline to 0,
leading to an abundance of resources per capita in the next period. An abundance of
resources per capita in the next period, as already argued, leads to a high fertility rate in
that period, and allows the population to bounce back.

When fossil fuels are abundant at the beginning, a competitive equilibrium in our
model consists of three phases. In the first phase, the energy inputs used in the production
of the consumption good come solely from oil. If the population is stable or growing in
the long run, oil alone cannot sustain the economy indefinitely, and the backstop must be
brought into use at some time to provide part of the energy requirements of the economy.
The time interval that encompasses the introduction of the backstop and the end of
extraction activities constitutes the second phase of a competitive equilibrium: the phase
of technology transition. The third phase of a competitive equilibrium begins after all
extraction activities have been terminated, either due to oil exhaustion or because the
competitive equilibrium in question involves incomplete oil depletion.

Incomplete oil depletion merits some elaboration. In traditional models of resource
extraction — a la Hotelling or in the tradition of optimal growth — the resource is always
presumed to be completely depleted, and the equilibrium to be efficient; the only concern
is to see how the resource is exploited through time. In an OLG model, this presumption
turns out to be unfounded. If the time horizon is finite, then any amount of oil that
remains at the beginning of the last period will be utilized as part of the energy input used
in the production of the consumption good. Furthermore, an economy with a finite time
horizon is an Arrow-Debreu economy, and a competitive equilibrium of such an
economy is Pareto optimal according to the first theorem of welfare economics.
However, when the time horizon is infinite, and agents make plans only for the two
periods of their life cycles, we cannot take for granted that the resource stock will be
completely depleted or that the equilibrium will be efficient. In her lifetime plan, an
agent does not consider the impact of her decision on the welfare of future generations.

Furthermore, when the time horizon is infinite, a young individual can always invest in



oil, and then sells the oil she owns to the young generation or the competitive firms of the
next period. The fact that the resource is exhaustible has no bearing on her investment
decision, and as long as the price of the resource rises through time at the market rate of
interest, she is quite willing to hold this asset so that the resource stock will only be
partially depleted. The part of the resource stock left in situ unexploited serves as a
financial bubble, and in steady state the resource price — according our modified version
of the Hotelling rule — will rise geometrically through time at a rate equal to the marginal
product of capital, which is also the steady-state birthrate.

Besides incomplete depletion, we should also mention that, unlike the planning
dynastic framework in which one sources of energy are used sequentially, oil and
backstop might be used simultaneously in the production process under the OLG
framework. Also, it is remarkable, but not surprising, that the introduction of oil into the
model gives rise to multiple equilibria with complex dynamics, which includes the
possibility of convergence to a steady state through damped oscillation, limit cycles, etc.

The paper is organized as follows. In Section 2, the overlapping-generations model is
presented. In Section 3, we study preliminarily the competitive equilibrium of an
economy which does not have any oil left, and which is endowed only with backstop
capital. We demonstrate the existence of a unique forward-looking temporary equilibrium
as well as the existence of at least a steady state under infinite time horizon. We then
show the possibility of oscillation and of a 2-cycle in the dynamic convergence to a
steady state. To support all these findings, we provide a numerical example for each case.
In Section 4, we focus on an economy endowed with both oil and backstop capital and
state the existence of a competitive equilibrium under infinite horizon. In Section 5, we
characterize the equilibrium oil extraction path, and provide the conditions under which
the oil stock will be exhausted in finite time. In Section 6, we discuss the possibility of
incomplete oil depletion, and show that there might exist infinitely many steady states in
which the oil stock is only partially depleted. Furthermore, we show that if the rate of
capital depreciation is low, then in addition to the equilibrium with incomplete
exhaustion there also exists an equilibrium in which the oil stock is depleted in finite
time. Thus there might exist multiple equilibria. Moreover, in the long run, the birth rate

is lower under incomplete than under complete oil exhaustion. In Section 7, we bring



together all the disparate elements into a synthetic characterization of the competitive
equilibria that emerge from our model. Section 8 contains a summary of our major

findings and some concluding remarks.

2. THE MODEL
2.1. The Technology

The perfectly competitive firms produce a consumption good from two inputs — labor
and energy — according to a standard neoclassical production function, say Y = F(E, L),
where Y denotes the output; E the energy input; and L the labor input. In what follows,
we shall let e = E/L denote the energy input per worker, and f(e)=F(e,l) denote the
output of the consumption good produced by a worker. We assume that f'(e) >0 for all
e>0, /imf'(e)=o when e - 0, and /imf'(e) =0 when e — o.

In our economy, energy inputs come from two sources: oil and a backstop, say solar
energy. While oil can be extracted at negligible cost, its ultimate stock is limited. The
backstop, on the other hand, can provide a perpetual flow of energy. However, harnessing
the Sun’s energy requires investments in backstop capital, say solar collectors. In any
period, the amount of solar energy harnessed is assumed to be proportional to the stock of

backstop capital K, and, to simplify the exposition, we shall assume that the

proportionality constant is equal to unity, i.e., one unit of backstop capital produces one

Btu. Also, we shall assume that backstop capital depreciates at rate 6,0< 0 <1.

If Q, is the amount of oil — also measured in Btu’s — extracted for use as part of the
energy input in period t, and K, is the stock of backstop capital in that period, then the
total energy input used in period t is E, =Q, + K,. Furthermore, if L, is the labor input
used in period t, then the output of the consumption good in that period is
Y, =F(Q +K,,L). We assume that the consumption good can also be used as

investment goods to augment the stock of backstop capital. As time goes on, and the oil
resources dwindle, it is imperative that investments in the backstop be made to prevent a
drastic reduction in consumption. The accumulation of backstop capital only influences
the output of the consumption good indirectly through the amount of solar energy

delivered by the backstop sector to the economy. Because there is only one kind of



capital in the model, namely backstop capital, we shall from now on refer to backstop
capital simply as capital.
2.2. Economic Agents

In the economy, four classes of economic agents coexist in each period: a young
generation, an old generation, competitive firms producing the consumption good, and
competitive firms producing solar energy. These economic agents interact on five
markets — oil, solar energy, labor, backstop capital, and the consumption good. An
individual works when she is young. She allocates her wages among current
consumption, raising children, and saving for her old-age consumption. The two real
assets in the economy are oil and capital, which represent the only possible forms of
saving.

At the beginning of each period t,t =0,1,..., the state of the economy is represented by a
list (X,,K,, Nto, Ntl), where X,, K, Nto,and Nt1 represent, respectively, the remaining oil
stock, the stock of capital, the number of young individuals, and the number of old

individuals. The initial state of the economy, i.e.,(X,,K,,N;,N;), is assumed to be

known. The consumption good in each period is taken as the numéraire, and for each
t=0,L..., let ¢, ¢, o,and p,denote, respectively, the price of oil, the price of solar
energy, the wage rate, the rental rate of backstop capital — all in period t.

2.2.1. The Old Generation

The real assets in each period are owned by the old generation of that period. An old
individual in period t owns X, /N, units of oil and K, /N, units of backstop capital, and
her consumption is thus given by ¢, =[¢ X, +(1- 5 + p)K,]/N;,.

2.2.2. The Young Generation
A young individual owns nothing except for 1 unit of labor that she supplies in-

elastically on the labor market. She has to allocate her labor income among current

consumption, raising children, and saving for old-age consumption. A lifetime plan for a
young individual of period t is a list (Ct0 ,Cl,0, X, . K, ) where ¢, ¢, b, X, and
k.., denote, respectively, her current consumption, her old-age consumption, the number

of offspring she raises — at the constant cost h in terms of real resources per child — the



amount of oil she buys as investment, and the amount of capital she buys — also for
investment purposes. The lifetime utility associated with such a lifetime plan is assumed
to be given by

(1) u(e)+ (e, +v(b,),

where u(c) is the single-period sub-utility function associated with consumption, and
v(b) is the sub-utility function of offspring. Also, 7,0<y <1, is a parameter
representing the factor she uses to discount future utilities. It should be emphasized that
for parents children have intrinsic value, and the number of offspring is here considered
as a consumption good from their viewpoint." We impose the following assumption on
the single-period sub-utility function of consumption and the sub-utility function of

offspring:

AssuMPTION 1: The sub-utility function of consumption u(c) is defined for all ¢ >0. Itis
continuously differentiable, strictly concave, and strictly increasing. Furthermore, it
satisfies the following Inada conditions: /im__u'(c) =+ and ¢im_, . u'(c)=0. As for

the sub-utility function of offspring, v(b) is defined for all b>0. It is continuously
differentiable and concave. Furthermore, there exists a number b™* >1 such that
v'(b)>0, 0<b<b™, and v'(b)<0,b>b™".

Note that b™" represents the saturation number of offspring. Because the single-period

sub-utility function of consumption and the sub-utility function of offspring® are both

' One may think of bt as a measure of quality of a child — in period t — for an economy in an economy
endowed with a constant population, say No- Then the economy’s human capital at the beginning is

N (()) b0 , and the economy’s human capital in the following periods are given by N 0bt ,t=12,... We think

that when one talks about human capital, the investments involved should encompass both the efforts made
with regard to the quantity of children and the efforts made with regard to the quality of each child. Here,
the quantity-quality trade-off is relevant and merits a separate study. In this paper, we try not to be abusive
by engaging in a lax interpretation of human capital. Therefore, we choose to consider b as the number of

offspring, and thus Nt0 = N(()) bO"'bt—l is the size of the young generation in period . The size of the

young generation in each period is endogenous precisely because bt is a decision variable for a young

individual in period t.

2 Observe that part (ii) of Assumption 1 rules out homothetic preferences. If preferences are homothetic, the
Engel curves of current consumption, future consumption, and offspring are all straight lines. In particular,
when labor income rises, the demand for offspring rises in the same proportion as the rise in labor income,



assumed to be concave and increasing, current consumption, old-age consumption, and
offspring are all normal goods. Furthermore, because it is costly to raise children, the
optimal number of children is strictly less than b™".

The problem of a young individual in period t is to find a feasible lifetime plan that
maximizes (1) subject to the inter-temporal budget constraint
2y ¢ +c,,/r,,+hh—@ =0,
where we have let
(3)  r=maxig /g 1-5+p]
denote the interest rates she earns on her savings.

Note that the Inada condition imposed on the sub-utility function associated with

consumption implies that ¢ >0 and ¢, > 0; however, the number of offspring raised by

a young individual of period t might be zero if the current wage rate is low enough. The
saving of the individual is

(4) s, =w,-c -hb,

and the division of saving between oil and capital depends on their relative rates of

return. If ¢,.,,/¢ >1-0+p,,,, then X, =s/¢, and k., =0. If ¢, /4 <1-5+p.,,
then x,, =0 and k., =s. When ¢, /¢4 =1-5+p,,, the individual is indifferent
between oil and capital, and k,,, can assume any value between 0 and s,.

What happens to the optimal lifetime plan (c/,c

t+1°

b,) when the rate of return to saving

in the next period rises? Because a rise in I,

makes the price of 1 unit of old-age
consumption cheaper, we expect that the substitution effect will cause old-age
consumption to rise at the expense of current consumption and the number of offspring.

Furthermore, as r,,, rises, real lifetime income also rises with r,,. The income effect

+1°
raises current consumption, old-age consumption, and the number of offspring. The

income effect reinforces the substitution effect, and causes old-age consumption to rise

which seems to be untenable. Furthermore, for an economy that is sustained only by renewable energy
resources, homothetic preferences imply that from any initial condition the economy enters a steady state
after one period: the transition to its steady state level of the birth rate lasts exactly one period, and this also
seems unreasonable. On the other hand, it can be shown that homothetic preferences allow for a much
simpler proof of the existence of a competitive equilibrium for the case the economy begins with a positive
stock of fossil fuels.



even more.. However, for current consumption and the number of offspring, the net

impact is ambiguous because the substitution effect and the income effect operate in

opposite directions. The net impact on s, is thus ambiguous although ¢/, is increasing in

I,.,. To obtain sharper results, we shall make the following assumption:

AssUMPTION 2: For a young individual, current consumption, old-age consumption, and
offspring are gross substitutes

Assumption 2 is often made in overlapping-generations models and looks quite
innocuous at the macroeconomic level; see, for example Azariadis (1993, Section 7.4). It
follows from this assumption that the current consumption of a young individual and the
number of offspring she raises will decline when the discounted price of future
consumption declines. Hence saving is an increasing function of the rate of interest. On

the other hand, for a young individual, current consumption, old-age consumption, and

offspring are all normal goods. Thus we expect ¢/,

.., and Db, to rise with

1 . . .
o,. Furthermore, because C,,, = I, ,S,, saving also rises with @,.

Now according to Assumption 1, the Inada condition is imposed on the sub-utility
function of consumption, but not on the sub-utility function of offspring. Thus we can
expect that when the labor income of a young individual is too low, she will choose not to
raise children. To determine the critical level of labor income that triggers the extinction
of the population at the end of the following period, let

(5) @™ (8) = Inf {a)t|bt >0, giventhatr,, =1 —5}.

+1
As defined, @™" (&) is the critical wage rate at or below which a young individual will
choose not to raise children, given that the rate of return to saving is equal to 1-9, its

min

minimum possible level. Furthermore, if ®™"(J)is the labor income of a young
individual, then using Assumption 2, we can assert that for any rate of return above the

minimum level 1§, the individual still chooses not to raise children. Let €™ (5) denote
the energy input per worker that gives rise to the critical wage rate ™" (5). These two

critical variables are linked by the relation: @™ (5) = f(e™(5)) —e™(5) f'(e™"()). As

min

10} 4 ©™"(5), the number of offspring she raises will tend to 0 while the saving for old-



age consumption is bounded below and away from 0, which implies that
S(@,,1,,,)/b(aw,r1,,,), the saving/offspring ratio, will tend to infinity. It is this property
that prevents the population from collapsing in finite time. When the labor income
declines to the critical level @™"(5), the birthrate approaches 0, but the saving for old-
age consumption — although low — is still bounded below and away from 0, allowing for a
high saving/offspring ratio. The high saving/offspring ratio means a high level of energy
input per worker in the next period, with an ensuing high wage rate in that period. A high
wage rate in the next period leads to a high birthrate in that period, which gives the
population a chance to bounce back. The saving/offspring ratio also tends to infinity
when labor income tends to infinity. The reason is that the birthrate, although rises with
income, remains bounded above by the saturation level b™* while saving increases
without bound. Thus when the wage rate is high, the cost of raising children becomes a
negligible fraction of labor income, and most of the labor income is spent on current
consumption and on investments to provide for old-age consumption. Thus, we can
expect the curve @, = s(@,,I,,)/b(a,1.,,), ® > o™ (5), to have a U-shape.
2.2.3. Solar Energy Producers

Solar energy is produced by competitive firms from capital. The representative solar

energy producer solves the following profit maximization problem:
max(K#’S#)[(otS - pK 1
subject to the technological constraint S*—K* <0,where K" and S* represent,

respectively, this firm’s demand for capital and its output of solar energy.
2.2.4. Producers of the Consumption Good

In each period t, the representative firm in the consumption good sector solves the
following profit maximization problem:
max o v, Y —4Q -9 S —olL]

subject to the technological constraint Y —F(Q+S,L)<0, where Q, S, L, and Y

represent, respectively, the oil input, the solar energy input, the labor input, and the

output of the consumption good. Let (Q,,S,,L;,Y,) be a solution of the preceding profit

maximization problem. We have (i) Q, =0 if ¢ >¢, (1) S, =0 if ¢ <¢. When



@ =@,, the mix (Q,,S,) is indeterminate, although the sum E, =Q, +S, is uniquely

determined.

2.3. Definition of Competitive Equilibrium

Let P=(4,0,®,p ), be a price system. An allocation induced by Pis a list of
infinite sequences
A= 01 CL1sBis X ) (QusSes L YO s (KIS 00 (X K NENDE )
with the following properties: Under the price system P,
(i) € =[4 Xy + 1=+ py)K 1/ Ng;
(i) (¢/,c,,,b,%.,,,K.,,) is the optimal lifetime plan for a young individual of period t;

(iii) (K/,S/) is an optimal production plan of the representative firm in the backstop

sector in period t;

(1v) (Q,,S,, L;,Y,) is an optimal production plan of the representative firm in the
consumption good sector in period t;

(V) (X, K NEONGY = N (X K, D).

The pair (P,A) is said to constitute a competitive equilibrium if the following market-
clearing conditions are satisfied for each t =0,1,...,

(Vi) X, +Q =X,

(vii) S, =S/,

(viii) L, = N/,

(ix) K/ =K,

(x) N/c/ +N’(c+hb +k,,)=Y, +(1-5)K..

3. COMPETITIVE EQUILIBRIUM FOR AN ECONOMY WITHOUT OIL
RESOURCES

Suppose that the economy begins in state (KO, N, ,Né) in period 0, with
K, >0, N(()) >0, and Né > 0; that is, the economy begins without any oil resources, but

with a positive stock of capital and a positive population. Because one unit of capital



produces one Btu, and because in equilibrium the profit in the backstop sector is 0, the
price of renewable energy is equal to the rental rate of capital. Thus, we shall conduct our
analysis in terms of the rental rate of capital without explicitly mentioning the price of
renewable energy.
3.1. The Capital/Labor Ratio
When there are no oil resources, all the energy needs of the economy are provided by

the backstop. To prevent the population from becoming extinct in period 1, we shall
assume that x, >€e™"(5), where we have let x, = K,/ N,.

In period 0, the equilibrium rental rate of capital and the equilibrium wage rate are
given, respectively, by p, = f'(x,) and o, = f(x,) — x,f'(x,). The consumption of an
old individual in period 0 is given by ¢; = (1- 5 + p,)K, /N,. As for a young individual
of period 0, the current consumption, the old-age consumption, the number of offspring,
and the saving under the form of capital that constitute the solution of her lifetime utility

maximization problem are denoted by c’(@,,1-6+p,), ¢ (@,,1-5+p,),
b(wy,1-06+ p,), and K(w,,1-95+ p,), respectively. The capital labor ratio in period 1

that is generated by this optimal lifetime plan is
K(@y,1 -0+ p)) =k(®,,1-0+ p,)/b(@,,1-5+ p,).
3.2. Existence and Uniqueness of Competitive Equilibrium for an Economy without Oil
Resources

min

For any wage rate @, > @

C(@y, ) = k(@1 =5+ p))).

As defined, {(w,,p,) represents the rental rate of capital in period 1 generated by the

(o) and any rental rate of capital p, =0 in period 1, let

maximizing behavior of a young individual of period 0, given that @, is her labor income
and p, is the rental rate of backstop capital that this individual expects to prevail in
period 1. It is clear that the curve ¢(@,,.) is continuous. Because a young individual
must save for her old-age consumption, her capital investment is always positive even if
its rate of return is 0; that is, 0 <k(@,,l —0) < @,. Furthermore, because o, > o™ (9),

we must also have b(w,,1-9)>0. Hence «(w,l—-0)>0, which implies



0<{(w,,0)<oo. Also, according to Assumption 2, the capital labor ratio
K(@,,l =0 + p,) 1s increasing in p,, which implies that {(w,,.) 1s downward sloping.
Now as p, continues to rise, if b(w,, |-+ ,,)=0 for some value p, =p,, then
k(wy,1 =5+ p) = +o when p, T p,, which means that ¢ (w,,p,)¥0 as p, T p,, and
¢ (w,,-) must have crossed the 45-degree line before p, reaches p,. On the other hand, if
b(w,,p,) >0 for all p, 20, then {(w,,.) must also cross the 45-degree line at a single

point. In either case, {(w@,,.) crosses the 45-degree line at a single point, which

represents the equilibrium rental rate of capital in period 1. Note that at this equilibrium
the birthrate 1s positive. We have just established the following lemma:

LemmA 1: Suppose that @,, the wage rate prevailing in period 0, is strictly above the
critical level »™"(8). There exists a unique value for the rental rate of capital in period
1 that satisfies the condition f'(x(@,,1-3 + p,))=p,. The unique value of p,, say
0, =9(w,), that satisfies this condition is the equilibrium rental rate of capital in period
1, given that @, is the wage rate prevailing in period 0. Furthermore, the equilibrium

birthrate in period 0 is strictly positive.

In period 1, the equilibrium capital labor ratio, the equilibrium price of solar energy,
and the equilibrium wage rate are given by «, =x(w,,1-5+0)=[f'1"(0), @ =p,,

and o, = f(x,)—x,f'(x,) > @™ (9), respectively. Also, the state of the system in period

1is (Kl, Ny, Nll): (Ngk(a)o,l —5+p,),Nb(w,,1-6+ p,), Ng) The procedure used to
obtain (¢,,®,,p, ),

(" (@y. 1= 8+ p)C (@, 1= 5+ p,)b(@y, 1= 5 + p,) k(e 1= 5+ py)),
and (Kl, N/, NI‘) can be repeated ad infinitum to obtain a price system P = ((pt , O, Py ):C: 0
and an allocation induced by P, say

A= (03 (00 6L B k)70 (Sus L Yo s (KT 8700 (K NELNDY )

where



(e!.ct.bi k)
= (w1 = 8 + puy) C (@l = 5+ )bl = 8 + puy) (ol = 8 + poy) )
and S, =S/ =K/ =K,L =N"Y,=F(S,,L). The pair (P,A), thus constructed,
constitutes the unique competitive equilibrium for an economy without oil resources. We
summarize the result just obtained in the following proposition, which bears resemblance

to Theorem 13.1, found in Azariadis, op.cit, page 108.

ProrosiTiON 1: For an economy that has no oil resources, but that is sustained by a
source of renewable energy — provided by a backstop technology — there exists a unique

competitive equilibrium.

3.3. Steady States for an Economy without Oil Resources: Existence and Uniqueness
Let

6 p™(O)=1'(E" ()
denote the critical price of energy at or above which a young individual will choose not to

raise children. Now for any initial rental rate of capital p, that satisfies the condition
0<p, <p™, define

(M) G(py) = 9((py))

where we have let w(p,) denote the prevailing equilibrium wage rate when p, is the

equilibrium rental rate of capital; that is, @(p,) = f(/co)— Pokys With &, =[ '] (p,).

max

The map G: p, = G(p,),0< p, < p™(5), plays a fundamental role in our analysis. It

describes the transition of the equilibrium rental rate of capital from one period to another
for an economy without oil or for an economy that has exhausted its oil resources. A
fixed point of G represents a steady-state level for the rental rate of capital. The

following lemma presents some of the limiting behavior of G.

LEmmMA 2: We have fimmpmax(a)G(Po):O and fimpowG(po)zo. Also, G'(p,)>1. for

all p, in a right neighborhood of 0.



ProOOF: First, note that w(w(p,),l—5)—> o when p,T p™*(5).Furthermore,
according to Assumption 2, we have
K@ (py).1 - 8) < k(@(py)1 -5 + g(@(p,))
which implies that
F(lw(p)1 = 81)> f'(@(p,).l =& +9((p,) = G(p,).
Hence
M eGP =0im o f (@)= S+ 9(a(p,))
<AM e (c[a(p,),1 - 51)=0.
Next, note that as p, 40, the capital labor ratio and the wage rate associated with Lo
namely x,, and @(p,), both tend to infinity. Because the current wage rate tends to

infinity, the current consumption and the future consumption of a young individual both

tend to infinity — even when the rental rate of capital in the next period is 0. Also, the

number of offspring raised by a young individual will rise to the saturation level b™".
Hence the capital labor ratio generated by the maximizing behavior of a young individual

of period 0 will tend to infinity, which implies that the rental rate capital in period 1,

namely G(p,), will tend to 0. Finally, note that as p, 40, the capital labor ratio
generated by the maximizing behavior of a young individual, sayx,, satisfies the
following inequality: &, < f(x,)/b™ =[f(x,)/x,][x,/b™]. Due to the Inada
condition on f, the expression inside the first pair of square brackets tends to O as
K, = +o. Hence k,/k, is arbitrarily small when p, is sufficiently small, which means

that G(p,)=p, = f'(x,) > f'(x,) = p, forall p, in a right neighborhood of 0. ]

We shall extend the curve G:p, > G(p,),0< p, <p" (), to all of the closed
interval [0, o™ ()] by setting G(0) =0 and G(p™(9)) =0. Let

(8) Gmax (5) = maXOSpU <P (S) G(pO)'



Because and G(0)=G(p™(0))=0 and G(p,)>0 for all p, €(0,p™(J)), we must

have G™(0)>0. To preclude the possibility that the population becomes extinct in
finite time, we shall make the following assumption:
AssuMPTION 3: We have G™(8) < p™ (0).

Assumption 3 implies that for an economy sustained completely by renewable energy,

if the rental rate of capital is currently below the critical level o™ (9), it will remain
below p™(8) in the next period. If f'(x,)>G"™(9), then the equilibrium rental rate of

capital will enter the interval [0,G™(9)], called a confining set, in period 1, and will

max

never leave the interval after that. Now as p, rises from 0 to p™ (), the curve G rises
from the origin and stays above the 45-degree line initially. It reaches the maximum

value G™(9) at some point inside the open interval (0, p™(9)), then descends to the
point p™* (&) on the horizontal axis when p, reaches p™(J). Hence it must cross the

45-degree line at least once, and the rental rate of capital at such a crossing represents the

rental rate of capital in a steady state. We have just established the following proposition:

ProrosITION 2: For an economy that has no oil resources, but that is sustained by a

backstop technology, there exists at least a steady state.

max

The shape of the curve G:p, = G(p,),0< p, < p™(5) — first rising from 0, then

returning to 0 — suggests a possible rich dynamics. Depending on the preferences, the
technology, and the values of their parameters, convergence to a steady state might be

monotone or in damped oscillation. There might even exist cycles.

3.4. Numerical Example
Suppose that the lifetime utility function is
(€] /[l - o]+ e M-o]-(b-b™ ) /2p),
and the output produced by one worker — as a function of the energy input — is assumed

to be given by f(e)=ae”. For the simulation exercise, the numerical values chosen for

the parameters are: a=4,a¢=0.5,0=0.5,=25y=0.65h=0.250b"" =9,6=0.75.



Also, the initial backstop capital labor ratio is taken to be x, =0.09. The following

figure depicts the curve G: p, > G(p,), 0 < p, < p™ for this numerical example.
0 el

pmax

FIGURE.— The transition of the rental rate of capital from one period to another
Our calculations show that the critical energy input per worker is €™" =0.07, which
yields the following values for the critical wage rate and the critical rental rate of
backstop capital: ®™ =0.53 and pP™ =7.50. Also, G™ =2.89<p™, and
Assumption 3 is satisfied. The largest confining interval in which the rental rate of
backstop capital, i.e., the price of renewable energy, evolves is [0,G™ ] =[0,2.89]. The

results of the simulation exercise are presented in the following table:
TABLE I
CONVERGENCE TO STEADY STATE IN DAMPED OSCILLATION

(a=4,a=0.50=05,=25y=0.65h=0.25b" =9,6 =0.75,x, = 0.09)

Period K, (capital/labor P, (rental o, (wage b, (birth
ratio) rate of rate) rate)
capital)
0 0.09 6.667 0.6 0.003
1 38.53 0.322 12.41 6.306
2 0.45 2.993 1.34 0.714
3 0.83 2.201 1.82 1.363




4 0.59 2.600 1.54 0.988
5 0.69 2.406 1.66 1.157
6 0.64 2.503 1.60 1.069
7 0.66 2.455 1.63 1.112
8 0.65 2.479 1.61 1.090
9 0.66 2.467 1.62 1.100
10 0.65 2473 1.62 1.096
11 0.66 2.467 1.62 1.098
12 0.66 2471 1.62 1.097

The economy converges to a steady state in about 12 periods, and the convergence is in
damped oscillation. The capital labor ratio enters a small neighborhood of its steady state
value in about 5 periods. The rapid convergence is due to the assumption on the sub-
utility function of offspring. When the capital labor ratio is low, the low labor income
induces a young individual to give more weight to future consumption at the expense of
the number of offspring, resulting in a higher capital/labor ratio in the next period. In the
simulation exercise, the initial capital labor ratio has been chosen to be rather low, which
induces an initial optimal birth rate of 0.003. The capital labor ratio in period 1 is 38.53,
which is high, and the resulting high wage in that period induces the young generation of
that period to raise more children. The number of offspring raised by a young individual
of period 1 is 6.306, which helps to drive down the capital labor ratio in period 2. The
special features of the sub-utility function of offspring thus have a stabilizing influence
on the economy, and prevent the population from an abrupt collapse.

In the long run, the population grows at the rate of 9.743% per period. If the cost of
raising children is high, then the marginal utility offspring is low, or the productivity of
backstop capital is low, the steady state might involve a contracting population, i.e., a

steady birth rate strictly less than 1. In this case, the economy will become extinct in the
long run. Indeed, if the saturation number of offspring is b™ =8 instead of b™ =9, the

steady-state birth rate will be 0.96. A lower value of the saturation number of offspring
implies that parents have less love for children, which leads to a birthrate below the

replacement rate. If the saturation number of offspring assumes the value of



b™* =8.28234, then the steady-state birthrate is b =1,i.c., the population becomes

stable in the long run. If the parameters assume the following values:
a=745a=0.75,0=0.5 =15y =0.75,h=0.45b™ =10,0 =1.0,

then the economy has a stable two-cycle (,0*, p* *) = (4.610, 5.330), with the rental rate

of backstop capital alternating between 4.610 and 5.330. In terms of birthrates, the two-

cycle is (b*,b**)=(1.612,0.623), which indicates that the population will grow by 0.4%

every two periods.

4. EXISTENCE OF COMPETITIVE EQUILIBRIUM FOR AN ECONOMY WITH OIL
RESOURCES

Suppose that the economy begins at time O in state (X,,K,,Nj,N;), with
X, >0,K,>0. Let & =X,/N; and x, =K,/N; denote the initial oil endowment/labor
ratio and the initial capital/labor ratio, respectively. To keep the population from
becoming extinct in period 1, we shall assume that &, + &, > €™ ().

Let T be a non-negative integer. If we truncate our economy at the end of period T,

then we obtain an economy with a finite time horizon that we call the truncated economy
with time horizon T. A price system for the truncated economy with time horizon T is a
finite sequence P' =(4,,¢,, @, )i, An allocation induced by P'is a list of finite
sequences
AT = (63, (4GB X kDo (Qus S L YO s (K7 ST (X Ky N ND 7

with the following properties:

(i) Co =[4, X, + (1= +p)K,1/ Ny;

(ii) (¢!,c!,,,b,,%.,,K.,,) is the optimal lifetime plan for a young individual of period t,

when the price system P' prevails.

(111) (Q,,S;,L;,Y;) is an optimal production plan of the representative firm in the
consumption good sector in period t, when the price system P prevails.
(iv) (K{,S!) is an optimal production plan for the representative producer of solar

energy in period t, when the price system P' prevails.



(v) (X, KN NDY = N (ko buD), t=1,2,T.

(vi) ¢! = o

Observe that (vi) represents the consumption of a young individual in period T.
Because the problem ends at the end of period T, a young individual of this period has
no future to plan for and thus will neither save nor raise children; she will consume all the
wages she earns. The pair (PT ,AT) is said to constitute a competitive equilibrium for the
truncated economy with time horizon T if the following market-clearing conditions are
satisfied:

(vil) X, +Q, =X, 0<t<T, and X; =Q;.

(vii) S, =S/, 0<t<T,

(viii) L, =N/, 0<t<T,

(ix) K/=K, 0<t<T,

(X) [¢txt +(1_5+pt)Kt]+[Nt0(CtO +bt +kt+1)] :Yt +(1_5)Kt’ OSt<T7

[¢TXT +(1_§+pT)KT]+[N1(')C'IQ]:YT +(1_5)KT‘

In the technical addendum to this paper, the existence of a competitive equilibrium for
a truncated economy and the fact that all the equilibrium prices are positive are proved by
using the traditional Debreu-Gale-Nikaido technique. The existence of a competitive
equilibrium under infinite time horizon — as asserted by Proposition 3 — is then proved by
using Cantor’s diagonal trick to show that in the limit, when T — oo, a sequence of
truncated economies converges, and its limit is a competitive equilibrium under infinite
time horizon. In Proposition 3, we let & = X, /N?, &, =K,/N?, and g, =Q,/N, denote,
respectively, the equilibrium oil endowment labor ratio, the equilibrium capital labor

ratio, and the equilibrium oil input per worker — all in period t,t =0,1.....

ProposITION 3: Consider an economy with a positive stock of oil and possibly a positive

stock of backstop capital. This economy has a competitive equilibrium, say (PA), with
P= (¢1v¢t>a)t:pt)zos
A= (C(l)a(ctoactlnabta Xt+l’ kt+1)§c:0’(Qt’Sta Lt’Yt)tim(Kt#’ St#)tioa(xte Kt’ Ntoa Ntl)ic:o))



with the following properties:
(i) The birthrate in each period is positive.
(i1) The following relationship holds between the price of oil and the price of renewable

energy
) 0<min{g, p j=p, = f'(q + %)< d < p™, (t=0,1,..),

with equality holding for the second inequality in (9) if g, > 0.

5. OIL EXTRACTION UNDER COMPETITIVE EQUILIBRIUM
To alleviate some of the technical arguments concerning the limiting behavior of the

economy when the energy endowments/worker ratio is extremely high or close to the

min

critical level €™ (o), we shall make the following assumption

] 0
AssumpTION 4: For any e >0, we have f(e)—ef'(e) <bef'(e), where bis a constant

0]
satisfying 1 <b < b™.
Assumption 4 asserts that the earnings of the factor labor relative to the earnings of the

factor energy are not very high. The following lemma gives some properties of the

competitive equilibrium.

Lemma 3: (i) If &, is large, but «,is not, then g, is will be large, and a young individual
of period t will put all her saving in oil. (ii) If & +«, is large, then g, + x, is large, and
b, is close to b™*. Furthermore, &, +x,,, isalso large, but &, + «,, <Q, + k, < & + k..
Proor: If &, is large, but g, is not, then the energy input per worker, namely ¢, + x,,
will be bounded above, which in turn implies that the equilibrium wage rate @, is
bounded above and the equilibrium price of oil ¢, is bounded below. Hence the value of
the remaining oil stock per worker at the end of period t, namely ¢,(&, —q,), will exceed

her labor income, and this situation cannot arise in equilibrium. We have just proved the
first part of (i).

To prove (ii), suppose that & + x, is large. If «, is large, then obviously the energy

input per worker ¢, + x, is also large. If x, is not large, then & must be large, and



according to the first part of (i) just proven, g, must be large. The high energy input per

worker in period t leads to a high wage rate in that period, which will induce a young
individual of period t to consume more at the present time and raise a number of

offspring close to the saturation level. To show that &, +x,,, is large, suppose that
&, + K, remains bounded above when ¢ + k, tends to infinity. In this case, the price of

energy in period t +1 will be bounded below, and the capital income of an old individual
in period t +1 will be bounded above. In such a case, a young individual of period t can
certainly increase her lifetime utility by increasing her saving without bound as her labor

income rises without bound, contradicting the premise that &,, + x,,, is bounded above.

To show &, + k., <0, + &, <& + k,.note that

(10) s/ =@&, +x,, = 'O +x)Bé, /T (0 +x)+x., /(0 +x)]<a, /b

<b(q+x) f'(q +x)/b,
where that the last inequality has been obtained by invoking Assumption 4. It follows

from the two strict inequalities in (10) and result ¢, > f'(q, + x,) that

(1) Euy + DK ! TG+ kDTS (0 + &)1 + T, F1(0 + K1 < [D/b,1(G, + ).
Now recall that when &, +«, is large, q, + x, will be large, and b, will be close to
b™. Furthermore, when q, + «, is large, f'(q, + x,) will be small, and it follows from
(11) that &, +x,,, <&, +[x.,/ T'(q +x,)]<q +x,, as desired.
Finally, to prove the second part of (i), suppose that & is large, but x, is not. Then g,
is large, according to the first part of (i), and &,,, + k., is also large, according to the first

part of (ii). Furthermore, the price of energy in period t +1is higher than the price of

energy in period t, i.e.,
(12) ¢t+1 Z f'(thrl + Kt+l) Z f'(§t+l + Kt+l) > f'(qt + Kt) = ¢t'

If x,,, >0, there are two cases to consider: (1) x,,, is large when ¢, is large and (i1) «,,,
remains bounded when & becomes indefinitely large. In case (i), the rental rate of capital
in period t+1, namely p,,, = f'(q,,, + &,,,), Will be close to 0, which implies that the rate

of return to capital investment will be close to 1—6 <1. However, according to (12), we



have ¢, /¢ >1, ie., for a young individual of period t, the rate of return to oil

investment is greater than 1, and it will not be optimal for her to invest in oil. Case (i)

thus cannot arise in equilibrium. In case (ii), &, will be large, which implies that the

price of energy in period t+1 will be low, and investing in capital will yield a rate of
return close to 1— 6, which, again according to (12), is also strictly lower than the rate of
return to oil investment.

[
LeEmMA 4: There exist two values, say p and p*, which satisfy 0< p™ < p* < p™(9),
and which do not depend on the rate of capital depreciation, such that
p <f'(q+x)<p’, forall t=0,1,..

max

PrOOF: Note that when p, is in a small neighborhood of p™ (o) the equilibrium wage

min

rate @, will be in a small right neighborhood of the critical level @™ (5), and the saving

offspring ratio chosen by a young individual of period t will be high, which, according to

Lemma 3, leads to a lower value of energy in period t+1, i.e., p,, < p,. A limiting
argument’ can then be used to assert the existence of p*. Now for 0< p, < p*, if p, is
small, then q, + x, is large, and according to Lemma 3, q, + x,>0,,, + k.., , leading to

P > Py A limiting argument can then be used to assert the existence of p~. ]

From the perspective of a young individual, the decision on whether to invest in oil or
capital depends on the rates of return of these assets. For capital investment, a high rate of
depreciation discourages capital investment, while a low rate of depreciation, ceteris
paribus, makes this asset relatively more attractive than oil. Thus when the rate of
depreciation is low, we expect capital investment to be favored over oil investment; the
successive generations prefer to invest only in capital, and we can expect that the oil

stock will be exhausted in finite time. The following proposition confirms this intuition.

ProrosITION 4: If the rate of capital depreciation is not too high, then there exists a

competitive equilibrium under which the oil stock is exhausted in finite time.

3 For more details on the technical arguments, see the technical addendum.



Furthermore, there exists no competitive equilibrium under which the oil stock is
exhausted asymptotically.

ProoF: First, we claim that if the rate of capital depreciation is not too high, say
5 < p~, then there exists an integer T such that for any integer T >T and any competitive
equilibrium of the truncated economy with time horizon T, the oil stock is exhausted in

or before the penultimate period. Indeed, if the claim is not true, then for any positive

integer N there exists a positive integer T,T >n, and a competitive equilibrium for he
truncated economy with time horizon T, say
T
(PT AT )_ (¢1s¢t9a)tvpt)t:0’
AN I SRR T-1 T 0 &AT 0 NINT @0
(CO’(CI s Ct+l’ bt’ Xt+1’ kt+l t=0 ’(Qt’ SI’ Lt’Yt)IZO’(Kt’ SI)IZO’(XI’ Kt’ Nt s Nt )t:O’ CT )

such that X; > 0. Because X; >0, the oil investment of every young generation before
the last period must be positive, which implies that the price of oil must rise through time
at a rate greater than or equal to the rate of capital investment, i.e.,

G/ 21-0+p, (t=0,..,T=10).
In particular, we have @ /¢, >1-0+ p;. Because oil exhaustion always occurs in a

truncated economy, all of the remaining oil resources at the beginning of period T must

be extracted for use in the consumption good sector, and this will constrain the price of
oil in period T not to exceed the rental rate of capital in that period, i.e., ¢ < p;. Using
this last result in the preceding inequality, we obtain ¢ /¢ (1-¢;_,)=1-05, which
constrains the price of oil in the penultimate period to be bounded above by 1, i.e.,
@, <1. However, we know that the price of oil must rise through time from the initial

level ¢,=1'(q,+x,2>f'(§,+x,)>0 at or above the rate of return to capital
investment. Furthermore, according to Lemma 4, we must have p, > p~, for t=0,...,T.

Hence, using the hypothesis 6 < p~,we obtain 1-0+p, >1-5+p >1, for t=0,..,T.

This last result implies that the price of oil in period T —1 will be arbitrarily large when
T is large, which contradicts the hypothesis of the reductio ad absurdum argument. The
claim is now established.

We are now ready to prove Proposition 4. To this end, note that in the sequence of

truncated economies used in the proof of Proposition 4, oil resources are depleted by



period T in all the truncated economies with time horizon greater than or equal to T.
Hence in the economy that is the limit of a subsequence of the sequence of truncated
economies oil exhaustion also occurs by period T. This proves part (i) of Proposition 4,
To prove (ii) of Proposition 4; note that if the oil stock is exhausted asymptotically, then
the price of oil must rises indefinitely through time at or above the rate of return to capital
investment. The price of oil thus will tend to infinity when t tends to infinity. However,
we have already argued in the proof of the claim that the price of oil in the period
preceding a period in which oil is extracted for use in the production of the consumption

good is bounded above by 1. Thus, part (i1) of Proposition 4-is established. ]

6. INCOMPLETE OIL EXHAUSTION UNDER COMPETITIVE EQUILIBRIUM
In the preceding section, we show that when the rate of capital depreciation is not too
high, there exists a competitive equilibrium under which oil exhaustion occurs in finite
time. The following question immediately arises. Are there equilibria under which part of
the oil stock is left in situ unexploited. The answer to this question is negative is maybe,

as illustrated by the numerical example given in Sub-section 6.2 below.

6.1. Steady States under Incomplete Oil Exhaustion
Consider a competitive equilibrium under which the oil stock is partially depleted, and
that T is the last period the oil stock is exploited. Then we have 0<Q; < X; and
Q, =0,t>T.Because all the young generations of period T and after put their savings in
both oil and capital, we must have
(13) ¢, /4 =1-0+py (t=>T).
Furthermore, the current budget constraint for a young individual of period t>T can be
expresses under the following form:
(14)  ¢X, /N =w, —c —hb, —k,,.
Forwarding (14) by one period, then dividing the result by (14), we obtain

(15) b Nto _ 1-6+py, _ Oy — Ct0+1 —hb,, — &0,

0 - 0
¢ N, b, o, —¢, —hb, —x,b,,




Note that in (15) we have let x, =k, /b, denote the capital/labor ratio in period t,t > T,

and have used (14) to obtain the first equality. Also, note that the second equality in (15)

is a second-order nonlinear difference equation in the capital/labor ratio «,,t >T. If

(16) k =1lim,,  «,

t—>+40

exists, then in the limit, the second equality in (15) becomes
(17) [1-06+p]/b=1,
where we have let p =lim,_,, p, and b =1lim,__ b,.
If the rate of capital depreciation is not too high, then p > 6 according to Lemma 4,

and we must have b =1— & + p > 1, which means that in steady state the population and

the price of oil all grow at a rate equal to the rate of return to capital investment.
Furthermore, a young individual of any period owns only a fraction of the oil owned by
her parent, with the fraction being the inverse of the number of children raised by the
parent: the same oil stock is owned by each of the successive young generations, and due
to population growth each young individual in later periods owns a smaller and smaller
part of the economy’s oil stock.

When is incomplete oil exhaustion a likely outcome under competitive equilibrium? To
answer this question, let us look at the following more detailed representation of the
division of output among the various uses in a steady state under incomplete oil
exhaustion:

(18) (S-bk)=f(k)-&f'(x)-Cc’—hb -bx.

In (18), we have let S represent the saving of a young individual. The left side of (18)
thus represents the funds allocated to oil investment. The right side of (18) represents
what remains of the output of the consumption good produced per worker after (i) the
factor capital has received its remuneration and (ii) the young individual has paid for her
current consumption; the costs of raising children, and the cost of capital investment
required to sustain the steady state of the economy. If the earning of capital relative to
output is high, there will be little left for wages. Furthermore, out of the low wages, the
young individual must pay for her current consumption, the cost of raising children, and
capital investment. Because the birthrate is higher than 1, the cost of raising children will

be substantial if the cost of raising a child is high. There might not exist any value of K



such that the right side of (18) is positive, a necessary condition for incomplete oil
exhaustion. When such a value exists, one can always construct a competitive
equilibrium under which the oil stock is only partially exploited. Proposition 5 stated
below gives a condition for the oil stock to be partially exploited. In this proposition,
p(x)=T'(x) and w(x)= f(x)—«f'(x) denote, respectively, the rental rate of capital
and the wage rate that prevail when only renewable energy is used in the production of

the consumption good and when xis the capital labor ratio. Also, recall that

c’(w,,1,,,)and b(ew,r,,) denote, respectively, the current consumption of a young
individual of period t and the number of children she raises, given that @, is the prevailing

wage rate in period tand I, is the rate of return to her saving.

ProposITION 5: If the inequality
(19) (%) - xp(x) = c*(@(k),1 = 5 + p(x)) = (h + b(a(x),1 = 5 + p(x))x > 0
is satisfied for some value of x >e™" (&), then there exist infinitely many steady states in

which part of the oil stock is left in situ unexploited. Furthermore, the capital/labor ratio
and the birthrate are lower in a steady state with incomplete oil exhaustion than in the
steady state with complete oil exhaustion.
ProoF: Let x, be a value of « that satisfies (19) and
1
(20) &, = ¢_[f (1) — Ko p(Ky) — Co(w(Ko)al -0+ p(Ko))_ (h + b(a)(Ko)al -0+ ,0(’(0)))7('0],
0
where we have let ¢, = p(x,). Here we shall interpret «,, as the initial capital labor ratio
and &, — defined by (20) — as the initial oil endowment per worker. Next, let
b, = b(a)(zco),l—5+p(/co)), and suppose that in period t,t =0,1,...,the price of oil, the
rental rate of capital, and the wage rate are given, respectively, by @ =4b;, o = p(x,),
o, = w(k,). It is straightforward to verify that when the price system P = (g, 0, ®, ):i 0

prevails, a young individual of each period t =0.1,..., will have the same labor income,

will have the same current and old-age consumption, will raise the same number of
children, will invest in the same quantity of capital per child, and will spend the same

amount of real resources to buy oil. The price system thus constructed and the lifetime



plans induced by this price system thus constitute a competitive equilibrium. Under this
competitive equilibrium, the oil stock is never exploited; the capital/labor ratio is
constant; the birthrate is constant; the rate of return to capital is equal to the birthrate; and
the price of oil rises through time geometrically at a rate equal to the birthrate. The
competitive equilibrium thus constructed is thus a steady state for an economy with
exhaustible resources.

Now note that if there exists a value of x that satisfies (19), then by continuity all the
capital/labor ratios in a small neighborhood of « also satisfy (19), which implies that if
there exists one steady state, then there exist infinitely many steady states. Finally, note
that when « is high, the left side of (19) will be negative due to the Inada condition

lim f'(x)=0. Let k& be the smallest value of x such that the left side of (19) is less

than or equal to 0. Then any value of x that satisfies (19) will be strictly less than x ; that

is, the capital labor ratio in a steady state with incomplete oil exhaustion is less than that
in the steady state with complete oil exhaustion. The lower capital labor ratio in a steady
state with incomplete oil exhaustion means a lower wage rate and a higher rate of return
to saving. These last results imply — according to Assumption 2 — a lower birthrate in a
steady state with incomplete oil exhaustion than in the steady state with complete oil

exhaustion. n

Incomplete oil exhaustion is likely to exist if wages account for a proportion that is
much higher than capital remuneration and if the cost of raising a child is low. If oil
resources are abundant, the oil input per worker will be high according to Lemma 3. Thus
the amount of oil left in situ unexploited in the case of incomplete oil exhaustion will be
relatively small so that in equilibrium successive young generations can afford to pay for
the investment in this asset out of their wages. A competitive equilibrium with
incomplete oil exhaustion is obviously not Pareto efficient. Although oil has an intrinsic
value as an input in the production of the consumption good, the part of the oil stock left
unexploited serves no production purposes. Its only use is a store of value, a means
through which successive young generations transfer their incomes made during their
working days to days of retirement. In this manner, the part of the oil stock left

unexploited serves a basic function of money: a store of value. In contrast with paper



money, which has no intrinsic value and might have a zero price in equilibrium,” oil left
under the ground unexploited always has a positive value, which, according to our
version of Hotelling rule in general equilibrium setting, must appreciate at the rate of
interest, namely the real value of the solar energy harnessed from the marginal unit of

capital. This surprising feature — an oil bubble so to speak — is first encountered here.

6.2. Numerical Example

Suppose that preferences are represented by the following lifetime utility function:
Loge” + sLogc' +v(b), with v(b)=plog(b+1),0<b<b, where S is a positive
parameter and b is a constant greater than 1 but less than the saturation number of
offspring b™. As specified, the single-period sub-utility function is logarithmic and the
sub-utility function of offspring is also logarithmic in the relevant range [0,6]. The
number of offspring, and saving depend only on labor income, not on the rate of return to

saving, and the optimal lifetime plan for a young individual of period t is given by

0 h+a)t 1 _7(h+a)t) _/Bwt_h(l"']/) 5_7(h+a)t)

t t+l =

1+ B+y] +8+y " 7 hA+p+y) " T 1+ p+y

As for the output of the consumption good produced by a worker, we assume that it is
given by f(e)=e“, 0<a <1. The following values for the parameters are assumed:
a=0.10, £=0.73, y=0.77, h=0.13, and 6 =0.15. Also, the initial oil endowment
per worker and the initial capital/labor ratio are assumed to be given by & =2.011 and
K, =0, respectively. For this numerical example, we are able to find two competitive

equilibria, one under which the oil stock is exhausted in finite time, and one under which
the oil stock is only partially depleted.

Table II presents the equilibrium under which the oil stock is depleted in finite time.
Under this equilibrium, the oil stock is completely exhausted at the end of period 5. After
that the economy is completely sustained by the backstop. The two technologies co-exist

during four periods, and the economy enters a steady state — without any oil left — in

* See McCandless and Wallace (1991, Chapter 10).



period 6. The steady state capital labor ratio is 0.263, and the steady state birthrate is
1.068.
TABLE II
COMPETITIVE EQUILIBRIUM WITH COMPLETE OIL EXHAUSTION
(¢=0.10,4=0.73,y =0.77, h=0.13, 6 = 0.15, &, =2.011, x, = 0)

Period & K, (o} @ o o, b,
0 2.011 0O [0480| 0.194 |0.194|0.836|1.179
1 1.418 0 [0453| 0.204 |0.204|0.831]|1.168
2 0.826 | 0.084 | 0.337 | 0.218 |0.218|0.825 | 1.155
3 0.424 |0.161 | 0.222 | 0.237 ]0.237|0.818 | 1.138
4 0.177 | 0.214 | 0.127 | 0.264 | 0.264 | 0.808 | 1.116
5 0.044 | 0.246 | 0.044 | 0.305 |0.305|0.795 | 1.087
6 0 0.261 0 0.335 | 0.335]0.787 | 1.068
7 0 0.263 0 0.332 | 0.332 ] 0.788 | 1.068
8 0 0.263 0 0.332 | 0.332]0.788 | 1.068
t 0 0.263 0 0.332 | 0.332 ] 0.788 | 1.068

The second equilibrium we find is presented in Table III.
TABLE III
COMPETITIVE EQUILIBRIUM WITH INCOMPLETE OIL EXHAUSTION
(a=0.10,4=0.73,y=0.77, h=0.13, 6 = 0.15, &, =2.011, x, = 0)

Period & Ky ; b, o 2 b,

0 2.011 0 0480 0.194 0.194 0.836 1.179
1 1.898 0 0453 0204 0.204 0.831 1.168

2 1.253 0 0421 0.218 0.218 0.825 1.155



3 0.721 0.097 0.287  0.237  0.237 0.818 1.138
4 0.381 0.165 0.175  0.264  0.264 0.808 1.116
5 0.185 0.209 0.081 0.305 0305 0.795 1.087

6 0.095 0.232 0 0.372 0.372 0.778 1.047

t 0.095 0232 0 0.372b;¢ 0.372 0.778 1.047
br*

As can be seen from Table III, for the first three periods, all the energy requirements of
the economy are met by drawing down the oil resources. Capital begins to be
accumulated at the end of the third period, and energy produced by the backstop
technology provides part of the energy inputs in the fourth period. The two technologies
— fossil fuels and the backstop — are both exploited during three periods, with the
backstop gradually replacing oil. From period 6 on, the oil stock is not exploited
anymore. The amount of oil that remains at the beginning of period 6 is left in situ,
unexploited, and all the energy requirements of the economy are met by the backstop
technology. The economy enters a steady state at the beginning of period 6. In steady, the
capital labor ratio is 0.232, and the population as well as the aggregate capital stock
grows geometrically at the rate of 1.047, which is also the rate of return to capital
investment. Note that the rate of capital depreciation has been deliberately chosen to be
low, ¢ =0.15,so that an equilibrium under which the oil stock is depleted in finite time
exists, as asserted by Proposition 4. Also, note that the capital share in national income

(a =0.10) and the cost of raising a child (h = 0.13) are chosen sufficiently low to ensure

that an equilibrium with incomplete oil exhaustion exists, as asserted by Proposition 5.
Finally, observe that under both equilibria, the convergence to steady state is monotone,
due to logarithmic preferences, and that in steady state, the capital labor ratio as well as

the birthrate are both lower under the equilibrium with incomplete exhaustion.



7. CHARACTERIZATION OF COMPETITIVE EQUILIBRIUM

To concentrate on the influence of exhaustible resources on fertility decisions and on
the process of technology substitution, we shall consider the case in which fossil fuels are
abundant, but backstop capital is not. Also, we shall assume that the population is either
stable or growing in the long run.

When fossil fuels are abundant at the beginning, a competitive equilibrium consists of
three phases. In the first phase, the energy inputs used in the production of the
consumption good come solely from oil. Because the population is stable or growing in
the long run, oil alone cannot sustain the economy indefinitely, and the backstop must be
brought into use at some time to provide part of the energy requirements of the economy.
The time interval that encompasses the introduction of the backstop and the end of
extraction activities constitutes the second phase of a competitive equilibrium: the phase
of technology substitution. The third phase of a competitive equilibrium begins after all
extraction activities have been terminated, either due to oil exhaustion or because the
competitive equilibrium in question involves incomplete oil depletion.

According to Lemma 3, the oil input per worker in period 0 will be high, which means
a high wage rate in this period. The high labor income will induce a young individual of
period 0 to raise a number of children close to the saturation level b™. The division of
the output of the consumption good produced by a worker between the two factors of

production is represented by the identity f(q,)=wo,+¢,q,. Furthermore, using

0
Assumption 4 and the fact that b, > b, we can assert that @, <b,¢,q,. Also, according to

Lemma 3, a young individual of period 0 will invest all her saving in oil, and we have
QD) & =[S — 170y =[s, /0y ] <[, / bydy 1< qy < &

The chain of inequalities in (21) indicate that the oil endowment per worker in period 1 is
strictly less than the oil input per worker in period 0, which is in turn less than the oil

endowment per worker in period 0. Because ¢, < &, we must have

22) 4 =T1@)=1'(E)> ') =4,

i.e., the price of oil in period 1 will be higher than the price of oil in period 0. If the oil

endowment per worker in period 1 is still large, the preceding argument can be repeated



to assert that the oil input per worker in period 1 — although lower than that in period 0 —
is still high, and a version of (21) as well as a version of (22) also hold for period 2.

During the early phase of the competitive equilibrium, the oil endowment per worker
falls rapidly. There are two reasons behind this fast decline. First, the price of oil must be
low to clear the oil market. More precisely, the low price of oil induces the firms
producing the consumption good to use more of this input. The high oil input per worker
also means a high wage rate, allowing the young generation to save more, which, coupled
with a low oil price, make it possible for the young generation to buy the rest of the oil
stock as investment. Second, the initial high birthrates mean less oil is available for each
worker in the following periods. One implication of the fast decline in the oil endowment
per worker is a slow-down in the population growth. As the price of oil rises, the wage
rate declines, and this in turn induces a fall in the birthrate. If the rate of return to oil
investment rises through time, the substitution effect — according to Assumption 2 — will
reinforce the income effect and cause the birthrate to fall even further. Thus we can
expect the birthrate — which is high at the beginning — to decline steadily through time as
the oil stock is being exploited.

In the second phase, technology substitution — backstop for fossil fuels — takes place.
When both technologies are exploited in a period, say t, we must have
23) @/@ ,=1-0+p, =1-0+¢.
Observe that when (23) holds, we must have ¢,_, <1. Furthermore, according to Lemma

4, if the rate of capital depreciation is not too high, then the right side of the second
equality in (23) will be greater than 1, which implies that the price of oil as well as the
rate of return to oil and capital both rise during the phase of technology substitution.
Again as our discussion of the first phase, the rise in energy prices means a fall in the
wage rate. Furthermore, a rise in the return to saving will induce a young individual to
save more at the expense of children, according to Assumption 2. Thus, the birthrate
continues to decline in the second phase.

How long does the second phase last? To answer this question, one must determine

precisely the time ¢,_, exceeds 1, which requires many more technical arguments that we

have not carried out. Needless to say, the length of the technology substitution phase



depends critically on the rate of capital depreciation. In the particular case of o =1, (23)
is reduced to ¢,/¢, , =4, which leads to ¢ =¢, , =1; that is when capital depreciates

completely at the end of each period, a necessary condition for the two technologies to
co-exist for a period is that the price of oil in that and in the previous period to be equal to
1, a result that cannot possibly arise in equilibrium. Thus, when capital depreciates
completely, technology substitution occurs abruptly, with the backstop being brought into
use only after the fossil fuels have been exhausted. The second phase does not exist in
this case. This result is not hard to understand. When capital depreciates completely, it is
not different from oil — an exhaustible resource — from the perspective of an investor:
both fetch the same price on the energy markets and both are used up at the end of the
production process.

During the third phase of a competitive equilibrium all the energy needs of the
economy are met by the backstop. There are two possible scenarios to consider: complete
oil exhaustion and incomplete oil exhaustion.

If the oil resources have been completely depleted when the third phase begins, then the
evolution of the economy from this time on is completely determined by the backstop
technology and the preferences, as described in Section 3. Depending on the values of the
parameters, the economy might converge to a steady state in a monotone manner, in
damped oscillation, or it might converge to a stable cycle. The existence of an exhaustible
resource has only a fleeting impact in the short run, especially at the beginning when the
resource makes it possible for the population to grow rapidly and for capital to
accumulate in a less painful manner. One can visualize through time the process of
transforming oil into the consumption good and into backstop capital. In the long run oil
does not influence the birthrate; its only impact is to allow for a population with a larger
absolute size.

In the case the competitive equilibrium involves incomplete oil exhaustion, there are
infinitely many possible steady states that arise from the infinitely many possible
equilibria with incomplete oil exhaustion. Starting from a given steady state, one can go
back in time to the initial state of the economy. As indicated by Proposition 4, when the
rate of capital depreciation is low, there exists also a competitive equilibrium under

which the oil stock is exhausted in finite time. The possibility of multiple equilibria arises



from the indeterminate mix of solar energy and oil use that we have pointed out in
solving the profit maximization problem represented by in Sub-section 2.2.4. Starting
from the same initial oil stock and the same initial capital stock, the economy might
evolve along different equilibrium trajectories, reaching the point at which solar energy is
substituted for oil at different times. Furthermore, at the time technology substitution
takes place, the oil stock and the capital stock under complete oil exhaustion might
assume values that are different from those under incomplete oil exhaustion (including
the special case the oil stock is completely exhausted when the backstop is first brought
into use). Which steady state the economy will converge to in the long run depends on
the state of the system at the time the backstop completely replaces oil in the production
of the consumption good. In each of these steady states, the capital labor ratio and the

birthrate are both lower than those in the state with complete oil exhaustion.

8. CONCLUSION

The major findings of the paper can be summarized as follows. When the economy
begins with a positive stock of reproducible capital, but has no oil, there exist a unique
competitive equilibrium and a steady state (see our Proposition 1 and 2). Depending on
the specified functional form of the lifetime utility function, convergence to the steady
state might be monotone or in damped oscillation. Furthermore, by varying the values of
some parameters of the model, we might obtain cycles instead of convergence in damped
oscillation. We would like to mention in passing that the problem raised by Galor and
Ryder (1989) about the non-existence of a steady state is due to the assumption that the
population grows at an exogenously given rate. The introduction of fertility decisions into
the overlapping-generations model (as can be seen in the proof of Proposition 2) is
sufficient to guarantee the existence of a steady state in our model.

The results of the model change dramatically when the economy is endowed with a
stock of fossil fuels. In traditional models of resource extraction — a la Hotelling or in the
tradition of optimal growth — the resource is always presumed to be completely depleted,
and the equilibrium to be efficient; the only concern is to see how the resource is

exploited through time. In an overlapping-generations model, this presumption turns out



to be unfounded. When the time horizon is infinite and agents make plans only for the
two periods of their life cycles, we cannot take for granted that the resource stock will be
completely depleted or that the equilibrium will be efficient. In her lifetime plan, an
agent does not consider the impact of her decision on the welfare of future generations
and can always invest either in backstop capital or in oil, and then sells what she owns to
the young generation or the competitive firms of the next period. The fact that the
resource is exhaustible has no bearing on her investment decision, and as long as the
price of the resource rises through time at the market rate of interest, she is quite willing
to hold this asset so that the resource stock might only be partially depleted. The part of
the resource stock left in situ unexploited serves as a financial bubble, and in steady state
the resource price — according our modified version of the Hotelling rule — will rise
geometrically through time at a rate equal to the marginal product of capital, which is
also the steady-state birthrate.

Incomplete depletion of the resource stock requires two conditions. First, the price of
oil must be above the price of renewable energy to discourage its use by the competitive
firms. Second, because the value of the stock left in situ must rise through time, the
population must also be growing so that the oil investment made by a young individual of
each period is only a fraction of the oil owned by a young individual in the preceding
period, with the fraction being equal to the inverse of the birthrate. We demonstrate that
if the rate of capital depreciation is low, there exists a competitive equilibrium under
which the stock of fossil fuels is completely depleted in finite time (see our Proposition
4) We also provide conditions for which there exists a continuum of steady states in
which the oil stock is only partially depleted (see our Proposition 5). In our model, the
indeterminacy of the steady state arises from the endogenous fertility decision of a young
individual and from the indeterminate mix of oil and capital in her investment portfolio.

To see why the indeterminacy of the steady state cannot occur under the assumption
that the population grows at an exogenously given rate, first note that according to
Hotelling rule, the price of oil must grow geometrically at the rate of interest, which is the
marginal product of capital, when oil exhaustion is not complete. Second, note that the
amount of oil bought by a young individual in any period is only a fraction of the amount

of oil bought by a young individual of the previous period, with the fraction being equal



to the inverse of the exogenous birthrate. Third, in steady state the value of the oil
investment of a young individual is constant, and given that the price of oil must rise
geometrically at the rate of interest, the amount of oil bought by a young individual of
successive generations must decline geometrically at the same rate, which we have
shown to be equal to the inverse of the birthrate. Therefore, the steady-state capital labor
ratio is completely determined by the exogenous birthrate, and thus indeterminacy of the
steady state cannot arise if the population grows at an exogenously given rate.

With endogenous fertility, on the other hand, when the economy is endowed with a
stock of fossil fuels, there are two variables to choose from a single budget constraint in
steady state: the capital labor ratio and the birth rate. Because the rates of return to oil and
capital investments are the same, the investment mix of a young individual is
indeterminate, and this means there is freedom in choosing either the level of capital
investment or the value of the oil investment. Choosing one means implicitly choosing
the other, and this is the reason why the set of possible steady states is a one-dimensional
manifold.

In general, we can expect that convergence to different steady states involves starting
from different initial conditions. The indeterminacy of the steady state thus provides a
possible explanation for the variations in incomes and birthrates across countries along
their paths of economic development by appealing to their different initial conditions °.
For an economy that converges to a steady state with incomplete depletion, there exists
also a competitive equilibrium under which the oil stock is depleted in finite time if the
rate of capital depreciation is low. That is, for the same initial condition, there might exist
two forward-looking competitive equilibria — one under which the oil stock is depleted in
finite time, and one with incomplete depletion. In this case, cultural or non-economic
factors can function as an equilibrium selection mechanism. In the long run, the economy
that uses part of the oil stock as a store of value to transmit wealth from one generation to

the next has a lower birthrate and a lower capital labor ratio than the economy that

> In the traditional Solow growth model, there exists a unique steady state, and convergence to the steady
state is global. The model is thus unable to explain the variations in incomes across countries in the long
run. A possible explanation for these variations was provided by Lucas (1993), who suggested that the
variations in growth rates across countries are due to their different levels of human capital, and human
capital is not mobile. Recently, multiple equilibria have emerged as a possible explanation for these
variations. See, for example, Yip and Zhang (1997), who tried to generate indeterminacy in a simple
endogenous growth model with endogenous fertility to explain these variations.



exhausts its resource stock, presumably because investing in oil leaves fewer resources
for raising children and for the capital investment needed to sustain a steady state.

The evolution of an economy endowed with a large stock of fossil fuels can be
described as follows. For a given initial stock of capital, a large initial oil stock means a
large oil endowment per worker in period 0, which leads to a high oil input (see Lemma
1.(1))per worker and a fortiori high wages in this period. The high wages induce a young
individual of period 0 to increase her current consumption, to raise a more offspring, and
to save more for her old-age consumption. Furthermore, all her savings will be put into
oil (see Lemma 1.(ii)) because the abundance of fossil fuels discourages the accumulation
of capital in the backstop sector. If the oil endowment per worker in period 1, which is
lower than that in period 0 because of high fertility in period 0, is still high (see Lemma
1.(ii1)), then what happens in period 0 repeats itself in period 1. As long as this process
unfolds, the price of oil will be rising; the oil endowment per worker will be declining;
and the birthrate will be falling.

If the population is stable or rising in the long run, then oil alone cannot sustain the
economy forever, and the backstop must be brought into use at some point in time. The
phase that encompasses the period the backstop is first brought into use and the period
extraction activities last take place is the transition phase during which the two
technologies — fossil fuels and backstop — co-exist, with the backstop progressively
displacing fossil fuels in satisfying the energy needs of the economy. During this phase,
the price of oil continues to rise, while the birthrate continues to fall.

At the end of the phase of technology substitution, the backstop completely takes over
the function of meeting the energy needs of the economy. If oil exhaustion takes place at
the end of the transition phase, then in the long run, the capital labor ratio and the
birthrate are the same as if the economy were never endowed with a stock of fossil fuels.
If the oil stock is only partially depleted, then in steady state the price of oil must rise
geometrically at the steady-state birthrate. In the terminology of Tirole (1985), oil in situ
becomes a financial bubble despite its potential in contributing to real production. The oil
stock left in situ serves one function of money — a store of value — and represents another

dimension of inefficiency in overlapping-generations models first encountered here.



Our model can be extended to include human capital. In the extended model, the cost of
raising children and the sub-utility function of offspring will depend on the number and
quality of offspring. The effective labor supply in the next period can then be considered
as a composite good that captures both the number of offspring and their quality.
Furthermore, for a young individual, the number of offspring is an inferior good, while
quality of a child is a superior good, so that the quantity-quality trade-off should favor
quantity over quality at low labor income, but quality over quantity at high labor income.
For such an extended model, the discovery of a large stock of an exhaustible resource
leads to rise in the effective wage rate, which can set in motion the demographic
transition — according to Lucas’ the theory of economic development (see Lucas (1998))
— by making the quantity-quality trade-off easier.

Although it is not our aim, the model we formulate sheds some light on policies. The
somehow obvious result is the following. In the numerical example of Sub-section 3.2,
we show that a shock that induces a decline in the saturation number of offspring from
b™* =9 to b™ =8, with the values of the other parameters remaining the same, will
result in a steady-state birthrate of 0.96, and the population will becoming extinct in the
long run. Our model thus suggests a possible remedy for this problem of population
extinction: subsidize the raising of children, and act conversely, in face of population
explosion.

This paper does not deal with normative issues which are of importance. It is well
known that inefficiency of various kinds usually arise in overlapping-generations models.
In addition to the eventual ‘’under-accumulation’’ of capital, we now face the possibility
of oil bubble, an “’over-accumulation’’ of a resource asset. Besides the prescription of
affecting the pattern of capital accumulation through taxation imposed on bequests, gifts,
etc. in order to restore economic efficiency, the obvious policy implication of our work is
how to induce complete resource exhaustion by some public intervention which should,
at some point in time, discourage wasteful resource hoarding under the form of in situ as
a resource bubble. Also, public intervention may alter the resource ownership over time:
instead of “’grand fathering’’ the entire resource stock to the fist generation. An authority
argues that it is a common property, henceforth distribute the right to use this stock to

different future generations; see Gerlag and Keyser (2001), or Valente (2006) for



analyses in the absence of population consideration. Besides efficiency, there is also the
inter-generational fairness issue. Restricting to selfish agents with finite lifetime, market
evaluation and, therefore, resource depletion are profitable to the current generation, and
this is not necessarily compatible with the well-being of future generations; see, for
instance, Mourmouras (1993). If some light could be shed with their simple OLG setting,
the analytical task is rather involved with our model where population is endogenous.
Because of the general equilibrium repercussion of any policy on the rest of the economy,

this is rather cumbersome, and would lead us too far afield.
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ADDENDUM
PROOFS OF PROPOSITION 3 AND LEMMA 4
Existence of Competitive Equilibrium in an Overlapping Generations Model with

Exhaustible Resources, Technology Transition, and Endogenous Fertility

The presence of an exhaustible resource whose stock declines through time makes the
problem non-stationary, and the existence of a competitive equilibrium becomes
problematic. Furthermore, the equilibrium can no longer be computed recursively. This
addendum provides a proof of Proposition 3, which asserts the existence of a competitive
equilibrium for an economy endowed with a stock of fossil fuels, and a more detailed
proof of Lemma 4. The addendum offers a contribution to the sparse literature on the
existence of competitive equilibrium for overlapping-generations models due to Balasko
and Shell (1980, 1981a, 1981b), Balasko, Cass, and Shell (1980), Wilson (1981), Galor
and Ryder (1989).

In their efforts to generalize the finite-economy model of Arrow and Debreu to the
overlapping-generations model, Balasko and Shell, op cit., and Balako, Cass, and Shell,
op cit., have qualified the latter as one with double infinities: an infinity of consumers
and an infinity of commodities. The infinity of consumers involves the infinite number of
successive generations, while the infinity of commodities involve the infinite number of
dated commodities — one commodity for each time period. These researchers established
the existence of a competitive equilibrium for a simple overlapping-generations model of
an exchange economy by showing — with the help of the Tychonoff theorem — that the
competitive equilibrium for the overlapping-generations model is the limit of a sequence
of truncated economies. The overlapping-generations model we formulate has both
capital and an exhaustible resource. It also has an endogenous population structure
because fertility decisions are determined by the maximizing behavior of successive
young generations. Compared to the models of these authors, ours is much more
complex, and it is not possible to invoke their results to assert that it has a competitive

equilibrium.



Our existence proof proceeds in three stages. First, we show that when the economy is
truncated at the end of a finite number of periods, the economy thus obtained has a
competitive equilibrium. Next, we deploy a series of technical arguments to establish
some upper and lower bounds on the prices, the birthrate, and the energy endowment per
young individual in each period that apply uniformly across truncated economies. In the
third stage, we use these bounds to show that a sequence of competitive equilibria — one
competitive equilibrium for each truncated economy — has a subsequence that converges
in the product topology of a denumerable family of finite-dimensional Euclidean spaces,
and the limit of the subsequence is a competitive equilibrium of the infinite time horizon
economy. The technique we employ in establishing convergence is Cantor’s famous
diagonal trick used in the proof of the following version of the Tychonoff theorem: “The
product of a denumerable family of compact metrizable spaces is compact and
metrizable.” The interested reader can consult Dieudonné (1976, (12.5.9)).

We would like to point out the advantage of the existence proof technique based on the
Tychonoff theorem over that based on the monotone mapping theorem (see, for example,
Stokey, Lucas, and Prescott (1989) or Olson and Knapp, op cit.) that is often used to
establish the existence of a competitive equilibrium for simple macroeconomic models
with one state variable and formulated under the overlapping-generations framework. In
the latter technique, it is necessary to establish first that the operator a fixed point of
which constitutes a competitive equilibrium of the overlapping-generations model has
some desired monotonicity property, and this is hard to show, especially when the model
has several state variables, as is the case of our model. Furthermore, unlike the proof of
Balasko and Shell, op cit., and Balasko, Cass, and Shell, op cit., our existence proof is

accessible to readers with only a rudimentary knowledge of real analysis.

Suppose that the economy begins at time 0 in state (X,,K,,N¢,N;), with X, >0,

K,>0. Let & =X,/N; and x, =K,/N, denote the initial oil endowment per young

individual and the initial capital labor ratio, respectively. The initial energy endowments



per young individual are thus equal to & +x,. Also, recall the assumption that

&, + K, >€e™"(5), which ensures that the population does not collapse in finite time.

A.1. THE EXISTENCE OF COMPETITIVE EQUILIBRIUM FOR A TRUNCATED ECONOMY

Let T be a non-negative integer. If we truncate our economy at the end of period T, then
we obtain an economy with a finite time horizon that we call the truncated economy with
time horizon T. A price system for the truncated economy with time horizon T is a finite
sequence ® = (¢,0,, 0, p,)i,. An allocation induced by B is a list of finite sequences
5T = (08 (610l b X K D (Qus S L Yo Lo (K 80 s (X K NN Ly )
with the following properties: When the price system ®F prevails,
(i) c=[gX,+(1=5+py)K,1/Ng,
(i)  (c/,¢,.b,%,,,K,,,) is the optimal lifetime plan for a young individual of
period t, (t=0,..,T-1),
(i)  (Q,,S,,L;,Y,) is an optimal production plan of the representative firm in

the consumption good sector in period t, (t=0,..,T),

(iv)  (K/,S/) is an optimal production plan for the representative producer of

solar energy in period t, (t=0,..,T),
(v) (X, KNS ND) = N2 (%KL b D, (t=1,.,T),
(vi) ¢ =ar.

Observe that (vi) represents the consumption of a young individual of period T. Because
the problem ends at the end of period T, a young individual of this period has no future
to plan for, and thus will neither save nor raise children; she will consume all the wages
she earns. The pair (PJ,Q% T) is said to constitute a competitive equilibrium for the
truncated economy with time horizon T if the following market-clearing conditions are

satisfied:

(vi) X, +Q, =X, 0<t<T, and X; =Q;.



(viii) S, =S/, 0<t<T,

(ix) L =N 0<t<T,

(X) K/=K, 0<t<T,

) [4 X, +(1=6+ p)KJ+[N/(c] +hb, +k, )]=Y, +(1-5)K,, 0<t<T,
[ X; +(1-8+ p K, J+[NC T =Y, +(1- K, .

The following proposition asserts the existence of a competitive equilibrium for a

truncated economy, and gives some of its properties. In this proposition, we have let
x, =K, /N and g, =Q,/N/ denote, respectively, the equilibrium capital labor ratio and

the equilibrium oil input per worker — both in period t.

ProrosITION A.1: Consider an economy with a positive stock of oil, and possibly a

positive stock of capital. For any integer T >0, the truncated economy with time horizon
T has a competitive equilibrium, say (PJ,M T), with ® = (4,0, 0, p,)., and

¥ = (C(l)a(ctoactlﬂabta Xt+1=kt+1 tT:_ola(QtaSta LtaYt)thoa(Kt#aSt#)thoa(xta Kt’ Ntoa Ntl)thoacg)
Under such a competitive equilibrium, the birthrate in each period before the last period
is positive, and the following relationship holds between the price of oil and the price of

renewable energy:
(A.1.1) 0<min{g, p }= F'(q, + &)= p, < 4 < p™(5), (t=0,..,T),

with equality holding for the second inequality in (A.1.1) if g, > 0.

The existence of a competitive equilibrium for a truncated economy, and the fact that all
equilibrium prices are positive can be established by using the well-known proof
technique developed by Debreu, Gale, and Nikaido.® Because fertility choice is
endogenous, the number of consumers — old and young individuals — in each period is
also endogenous, which means that the Debreu-Gale-Nikaido proof technique must be
slightly modified to take into account the endogenous market size in each period. To see

why the birthrate is positive in each of the periods before the last period, note that a zero

% See Nikaido (1970, Chapter 10).



birthrate in any period t <T implies a zero labor supply in the following period, leading
to a positive excess demand for labor in that period, and this cannot arise in equilibrium.
As for (A.1.1), it asserts that the equilibrium price of energy in each period is given by
the equilibrium price of renewable energy in that period, and is always less than or equal
to the equilibrium price of oil. To see why, note that in any period, if the stock of capital
is positive, then the supply of renewable energy is positive, and its price must adjust to

clear the market. Hence p, < ¢,. On the other hand, if the stock of capital is 0, then only
oil is used in the production of the consumption good, and this implies p, > ¢,.In this
case, we can set p, = ¢, without changing the decisions taken by the representative firms

in the oil and renewable energy markets as well as the lifetime plan chosen by a young

individual of the preceding period. Also, the price of energy in each period before the last
period must be lower than the critical level p™(9); otherwise, the birthrate in this

period will be 0, and we have just argued that this cannot arise in equilibrium.

A.2. UNIFORM BOUNDS ON TRUNCATED ECONOMIES

The following lemma establishes lower and upper bounds in two arbitrary successive

periods that apply uniformly to all truncated economies.

LeEmMA A.2: Consider an arbitrary truncated economy in which &, is the oil endowment
per young individual, and «, is the capital labor ratio — both in period t Also, suppose
that & and «, are constrained to satisfy the following condition:

(A2.1) (& +x)eln,.ml.

where 7 and 7, are two constants satisfying emi“(5)<gt <7,. Next, let (¢, p,,®,) be
the price system and b, be the birthrate — both in period t — under a competitive

equilibrium of a truncated economy. Also, let &, and «,,, denote, respectively, the oil

endowment per young individual and the capital labor ratio — both in period t+1 —

under this competitive equilibrium. We have the following results that hold uniformly for



all truncated economies with an energy endowment per young individual in period t that
is constrained to satisfy (A.2.1) and all competitive equilibria of these economies.

(i) ¢ is bounded below by ¢ = f'(77,) >0 and above by a number, say 4 .

(i) p, is bounded below by p = f'(7,) > 0 and above by a number, say p, < o™ (5).

(iii) @ is bounded below by a number o, >w™(5) and above by
o = T () -n.t' (7).

(iv) b, is bounded below by a number b, > 0and above by a number b, <b™*.

(v) &,., + K., is bounded below by a number n..> e™"(s) and above by a number,

Say 77(+1 '

PRrOOF: (i) First, note that the equilibrium price of oil and the equilibrium price of

renewable energy — both in period t — are bounded below by ¢ =p = f'(7,),
uniformly for all (&, +x,) e [Qt,ﬁt] and all equilibria of all truncated economies that

satisfy the preceding constraint. Next, note that according to (A.1.1), if ¢ > p"™(9),

then oil will not be used as part of the energy inputs used in the production of the
consumption good, and the entire oil endowment of the economy will be bought by the
young generation of period t. Hence if the price of oil in period t is too high in a

truncated economy, the value of the oil stock will exceed the labor income of the young

individuals of period t, and this cannot happen in equilibrium. We shall let gz?t denote a

uniform upper bound for the equilibrium price of oil in period t. Property (i) of Lemma

A.2 is now established.

(i1) Because we have exhibited a uniform lower bound for the price of renewable energy

in period t, to prove (ii), we now only need to show the existence of a uniform upper
bound p, < p™(9) for the price of renewable energy in period t. To this end, suppose
the contrary. Then for each positive integer n, we can find a positive integer T(n) and a

competitive equilibrium of the truncated economy with time horizon T (n) such that



(A.2.2) P (0)-1/n< f'(g,(n) +x,(N)) < p™(9),
where q,(n) and x,(n) represent, respectively, the oil input and the renewable energy

input per worker in period t under the competitive equilibrium in question. Furthermore,

if £,(n) and x,(n) denote, respectively, the oil endowment per young individual and the

capital labor ratio in period t under such an equilibrium, then the oil investment made by
a young individual of period t is given by
¢ (M —0q,(n) =[& (M) + & (M]-[q,(n) + &, (N)],
and in the limit, we have
(A.2.3) tim, . [&(n)—q(m]=7, —e™"(5)> 0.
We shall now show that (A.2.3) cannot hold in equilibrium. To this end, let
(eP (), () B (), X,y (M), k()
be the lifetime plan chosen by a young individual of period t. According to (A.2.2),
when n is large, the equilibrium wage rate in period t will be in a small right

min

neighborhood of @™ (), and this induces a very low birthrate in period t; that is,

b,(n) > 0 when n— co. Furthermore, because the equilibrium wage rate in period t is
bounded above by f(7;,)—7,f'(7,), the capital investment made by such an individual
must also be bounded above by f(7,) -7, f'(7,). Hence the total energy input used by all
the offspring of a young individual of period t must be bounded above by

Xt () + ke, (M) < &+ ke, (M) < 7+ F(7) ~ 71 F' (7).
The total output of the consumption good produced by all the offspring of a young
individual of period t is then bounded above by F(7, + f(7,)—7,f'(7,),b,(n)), which

tends to 0 when n tends to infinity. Finally, because the representative firm in the
consumption good sector pays for the oil input in period t +1 from part of its output, and
the young generation of period t + 1 pays for its oil investment from its labor income, and
labor income constitutes only a fraction of the output, the oil investment represented by
the left side of the first inequality in (A.2.3) will yield a zero rate of return, and thus

contributes nothing to the old-age consumption of a young individual of period t; that is,



in the limit it is not rational at all for a young individual of period t to invest in oil, We

have just established (ii) of Lemma A.2.
(1i1) Property (iii) of Lemma A.2. follows directly from property (ii).

(iv): First note that if b, is close to the saturation level b™, then using the first-order
condition that characterizes the optimal lifetime plan of a young individual of period t
we can assert that her current consumption and a fortiori her labor income will be large,

contradicting (iii) of the lemma. This show the existence of an upper bound Bt <b™*. To
show the existence of a positive lower bound for b, , suppose it is not true. Then for each
positive integer N, we can find a positive integer T(N) and a competitive equilibrium of
the truncated economy with time horizon T(n) such that b,(n)<1/n, where b, (n)

represents the equilibrium birthrate in period t under the competitive equilibrium in

question. Because b,(n) > 0 when n — oo, the oil investment of a young individual of

period t — as already shown in the proof of (i1) — will tend to 0 when n — co. There are

two possibilities to consider: 6 <1 and 6 =1.

If 6 <1, then investing in capital will yield a rate of return of at least 1 -6 > 0, and this
means — due to the Inada condition on the sub-utility function of consumption that in the
limit the capital investment of a young individual of period t will be strictly positive.
Furthermore, because the total output of the consumption good produced by all the
offspring of a young individual of period t will be equal to 0 in the limit, the capital
income that such an individual obtains by renting her capital in her old age will be 0.
Hence in the limit, the rate of return to capital investment obtained by a young individual

of period t will be /im___r.. (n)=1-05. However, for a young individual of period t, at

n—oo
the rate of return to capital investment of 1—- 06, the number of offspring she chooses to
raise will rise above 0 when the wage rate rises above the critical level ™" (&5). Using

(ii1), we can then assert that in the limit the number of offspring raised by a young



individual of period t will be positive, contradicting the premise of the reductio ad

absurdum, and (iv) is proved for the case capital does not depreciate completely.

If 6 =1, then investing in capital also yields a zero rate of return, and a young individual
of period t will not save, and in the limit she will spend her entire labor income on

current consumption and raising children. The last result together with the fact
@, > w, > ™" (5) imply that in the limit the equilibrium birthrate in period t will be
strictly positive, contradicting the premise of the reductio ad absurdum argument.

Property (iv) of Lemma A.2 is now established.

(v) If &, + xy,, is not bounded below by a number 7 > e™"(5), then for each positive

integer n, we can find a positive integer T(n) and a competitive equilibrium of the
truncated economy with time horizon T(n) such that

(A.2.4) P () —1/n< £1(&.,(N) + Kk, (N) < p™ (),

where & (n) represents the equilibrium oil endowment per young individual, and
K,,,(n) the equilibrium capital labor ratio — both in period t+1. According to (A.1.1),

f'(q,,(nN)+x,,,(n)) < p™ (). Using this result in (A.2.4), we can write

(A.2.5) PO —1/n< £1(&,, (N) + K, (N) < £'(Q, (N) +x,,(N)) < p™(I) .
It follows from (A.2.5) that o,,,(n) 4 @™ (5) when n — oo, with the ensuing result that
Zimb,,,(n) = 0, which contradicts the fact that the birthrate in period t, according to (iv),

is bounded below uniformly for all equilibria of all truncated economies.

If &, +k,, 1s not bounded above, then for each positive number n we can find a
positive integer T(n) and a competitive equilibrium for the truncated economy with time
horizon T(n) such that &, (n)+x,,,(n)>n, where &, (n) represents the equilibrium oil
endowment per young individual, and x,,,(n) the equilibrium capital labor ratio — both in
period t + 1. Hence either &, (n) or x,,,(n) must be large when n is large. If &,,(n) is

large, then using the result already proven that the birthrate of a young individual of



period t is bounded below uniformly for all equilibria of all truncated economies with

time horizon T(Nn), we can assert that the amount of oil bought by a young individual of
period t, namely b,(n)é,. (n), will exceed &, the oil endowment per worker in period t,
which is clearly not possible. On the other hand, if «,,,(n) is large when n is large, then

because the wage rate in period t is bounded above uniformly for all equilibria of all
truncated economies, the capital investment of a young individual of period t will exceed
her labor income when n is large, and this is not possible. The second part of (v) is now

established. ]

A.3. EXISTENCE OF COMPETITIVE EQUILIBRIUM FOT THE INFINITE TIME HORIZON
ECcONOMY WITH FOSSIL FUELS

For each integer T =1,2,..., let (&J,@‘Yf T) where B = (4,0, o, 0 )i, and
LT 0,T LT T T T N\T-1 T T T TNT
‘g T — (CO ’(Ct 4 CI+1 > bt s Xt+l’ kt+l t=0 » (Qt s St 4 Lt ’YI )t:O ’)
(KT8 s (X KT NPT NG g
be a competitive equilibrium for the truncated economy with time horizon T. We shall
now show that the sequence (PJ 7 )(::1 has a subsequence that converges in the product

topology of a denumerable family of Euclidean spaces, and that the limit of this

subsequence is a competitive equilibrium for the infinite time horizon economy.

Applying Lemma A.2 to £, and x,, we can assert the existence of the following bounds

for the price system in period 0 that apply uniformly for all the elements of the sequence

(@I,@Yﬂ T)r:lz

(A3.1) 0<g,<d <,
(A3.2) 0<p, <Py <Py <p™ (&),
(A.3.3) "™ (8) < w, < ) <@,

Furthermore, there exists a lower bound b, >0 on the equilibrium birthrate in period 0,

such that



(A.3.4) 0<b, <b

S+

<B, <b™

holds uniformly for all the elements of the sequence (F?;,é@ T);O:l. Also, there exist
bounds 7, and 7, , such that

(A.3.5) e™"(5) < n, < &+ <

holds uniformly for all the elements of the sequence (F?J 97 )OTO:1 .

The procedure used to obtain the bounds on the prices and the birthrate in period 0 as

well as the bounds on the energy endowment per young individual of period 1 can be

repeated ad infinitum to obtain a sequence @t,ﬁ , pt,,Bt, Qt,a_)t,gt,bt,nm,ﬁm ):C_O, such

that for t =0,1,...,

(A.3.6) 0<g <¢ <,

(A3.7) P, <Pl <p < p™(d),
(A.3.8) "™ O)<ow < <@,
(A3.9) 0<b, <b' <b <b™,

and

(A.3.10) e (S)<n, <& +Kl, <7,

hold uniformly for all the elements of the sequence (\%’T YT wzl ,with t<T —1.

Now for each integer t, let Z, denote the set of integers greater than or equal to t.

Invoking the Bolzano-Weierstrass theorem, we can assert the existence of an increasing

map 7,:N— 7,(n) of Z, into itself, such that the sequence

(M) Jr()rg(n) pro() gr(n) 5o )°
R R
has a limit, say (¢,,0,.@,,0,,&,%,). The process just described can be repeated ad
infinitum to obtain a sequence of increasing maps z,, 7,, 7,,... with

domain(z,) = range(z,) = image(z, )N Z,,,, (t=12,...),

such that for each t =0.,1,..., we have



s (-n(r0m) |l (mm) gyl o) !
- ' 9 ' b ' b
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Let RB= (¢t, P> O, ):'; »- Now for each t =0,1,..., the convergence of the price system, the

convergence of the birthrate — all in period t — and the convergence in period t+1 of the
oil endowment per young individual as well as the capital labor ratio imply the
convergence of the lifetime plan of a young individual of period t; that is, for each t,

Cto,q (i (7o (N)) Cl,rt (4..rl(ro(n)))’ btr‘ (...rl(ro(n)))’ X (4..rl(ro(n)))’ ktrlg...rl(ro(n))))

> Y+l t+1

0 Al
= (Ct ,C bt’xt+lﬁkt+l)

t+1°

fimn—nao (
(A3.11)
exists. In particular, the convergence of the price of oil and the rental rate of capital imply
the convergence of the consumption of an old individual in period 0; that is,

/im C(l),r[(--ml(ro(n))) — c(‘)

exists. By continuity, (A.3.11) is the lifetime plan that maximizes the utility of a young

individual of period t under the price system R

Using the convergence of the lifetime plans of the successive young generations, we can

assert the convergence of the state of the economy in each period; that is,

/im (X alaam) gal-a@m) oalaEm) e (-~-T1(To(n)))): (Xt’ KN, Ntl)

N—+o0

exists.

The market-clearing conditions in each period imply that the production plan of the
representative firm that produces the consumption good in each period and the production

plan of the representative firm in the backstop sector all converge; that is

Ty ('“TI(TO(n)))’ StTt (-~~T|(To(n))), L:: (--~T|(Tn(n))),Y Tt (~--T1(To(n)))): (

(A3.12) fim, .. (Q, s,.L..Y,)

t to

and

(A3.13) /im (Kt#,rt(“.rl(ro(n)))’ St#,r!(“.rl(ro(n)))): (Kt#, St#)

both exist. By continuity, (A.3.12) and (A.3.13) are profit-maximizing plans,
respectively, of the representative firm producing the consumption good and the

representative firm producing renewable energy in period t under the price system B
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We have just established the following proposition, which is Proposition 3 in the main

body of the paper.

ProposITION A.3: Consider an economy with a positive stock of oil and possibly a
positive stock of backstop capital. The pair (Pz@f ) thus constructed, constitutes a
competitive equilibrium of this economy. Under such a competitive equilibrium, the
birthrate in each period is positive. Furthermore, the following relationship holds

between the price of oil and the price of renewable energy:
(A3.14)  O<minig, pf= (0 +x)=p < < p"™(5), (t=0,1..),

with equality holding for the third inequality in (A.3.14) if g, > 0.

In (A.3.14), we have let x, =K,/N; and g, =Q,/N; . Also, we note in passing that

(A.3.14) holds for any competitive equilibrium, not just the one constructed in the proof

of Proposition A.3.
A.4: PROOF OF LEMMA 4

According to Lemma 3.(ii) in the main body of the paper, if the initial energy endowment
per young individual is large, then the energy endowment per young individual in period
1 will be lower, and this process will continue through time as long as the energy
endowments per young individual in the subsequent periods are still large. While this
happens, the price of energy will be rising. On the other hand, if the initial energy

endowment per young individual is close to the critical level €™ (&), then the birthrate in

period 0 will be extremely low, resulting in a large energy endowment per young
individual in period 1, and from period 1 on, the price of energy will begin its climb, as
just described. Thus, we can expect the existence of a positive lower bound for the price

of energy that applies eventually to truncated economies with long time horizons. The



following lemma, which is Lemma 4 in the main body of the paper, confirms this

intuition.

LEmMMA A.4: There exists a number p~ > 0 with the following property: If 6 < p~, then
for any value &, + x, of the initial energy endowment per young individual, there exists
a non-negative integer t (&, +x,), such that in any truncated economy with time
horizon of at least t™ (&, + x,), the equilibrium price of energy satisfies the following
condition:

pr=min{g, p} = f' (0 +x) 2 p", (t=1 (5 +xp))-
We prove Lemma A.4 in a series of claims.

CLamM 1: For each value of 6,0<6 <1, there exists a number £ >0 such that the
following result holds uniformly for all truncated economies: If the equilibrium energy
endowment per young individual in period t is such that f'(& +x,) < p™(9), then the
equilibrium energy endowment per young individual in the next period satisfies the

inequality f'(&,, +&x.,,) < p™(9) —¢.

PrOOF: Indeed, if the claim is not true, then for each positive integer n, we can find a

truncated economy with &, (n) as the equilibrium oil endowment per young individual

and x,(n) as the equilibrium capital labor ratio — both in period t, such that

fr(&(n) +x,(n)< p™(5), but

(A4.1) P (8)-1/n< f1(&,, () +x,,(N)).
Using (A.4.1), the fact q,,,(n) + x,,(N) <&, (N) +x,,,(N), and (A.3.14), we can write
(A4.2) PN (S) = 1/n< F1(E,, () + &, (M) F'(G, () + &, (M) < ™ (S).

Because the sequence f'(§t(n)+1q(n)),n =1,2,..., is bounded, it has a convergent

subsequence that, by abuse of notation, we still denote by f '(é’t(n) + Kt(n)), n=12,..Let



p = Limf'(&(n)+x,(n)). If p=0, then (&(n)+x,(n)) will be large when n is large,
which, according to Lemma 3.(i1), leads to a large value of (fm(n) + Km(n)). A large

value of (&, (n)+x,,(n)) in turn implies a small value off'(§t+1(n)+/ct+l(n)),

max

contradicting (A.4.1). Thus, we must have p > 0. If p = p™(9), then when n is large,
the equilibrium price of energy in period t will be in a small left neighborhood of
P™(5), which induces a very low value of f'(&,,(n)+x,,,(n)), again contradicting
(A.4.1). Hence the premise of the reductio ad absurdum argument leads to the following

max

result: 0< p< p™(d). Now pick a large value of n, then apply Lemma A.2.(v) to

& () +x,(n) to assert that &_,(n)+x,,,(n) 1s bounded below by a number greater than

min
e

(0), no matter how large n is; that is, when n is large, f'(&,,(n)+ x,,,(N)) remains

outside a left neighborhood of p™ (&), contradicting (A.4.2). ]

We shall let £(5) denote the supremum of the set of ¢'s for which Claim 1 holds. Note

that £ (5) >0 forall 0 <5 <1.

CLamm 2: For each value of 6,0<6 <1, there exists a number £ >0 such that the
following results hold uniformly for all truncated economies:
@I (6 +x)<e then (&5 +x) < (S +x)-

() If e< ' (& +K)SPp™(0)—€7(5),then < f'(&,, +K,)

ProOF: Indeed, if the claim is not true, then for each positive integer n, we can find a

truncated economy, with &,(n) as the oil endowment per young individual and x,(n) as

the capital labor ratio — both in period t— such that either (i) or (ii) of the claim does not

hold for ¢ =1/n.

Next, note that the condition f'(é:t(n) + K‘t(n))< 1/n implies that & (n)+ x,(n) will be
large when n is large, and thus according to Lemma 4.(ii), &,,,(n) + x,,,(n) will be lower

than &(n)+x,(n), which in turn implies f'(£(n)+x,(n))< f'(£,,(n)+x,,(n)). Hence



if the claim is not true, then only (ii) of the claim will be violated when n is large, i.e.,

for large n, we have f'(&,,(n)+ x,,(n)) <1/n, which in turn implies

(A43) fim(§t+l(n) + Kt+1(n)) = 0.

Because

0< f'(&(n) +x,(n))< p™(5)—&"(5),n=1.2,...,
the sequence f'(ft(n) + K‘t(n)), n=1,2,..., has a convergent subsequence that, by abuse of
notation, we still denote by f'(&(n)+x,(N)),n=12,... Let p =cimf'(&(n)+x,(n)).
We have 0< p < p™(8)—¢"(0). Furthermore, because (ii) of the claim is violated, we
must have p>0. Hence pe(0,p™ (5)—¢&"(0)], and & (n)+x,(n) will tend to
k=[f'T"(p)>e"(5). Now apply Lemma A.2 (v) to &(n)+x,(n), we can assert that

&1 (n)+x,,(n) is bounded above, and this contradicts (A.4.3). m

We shall let £ (0) be the supremum of the set of &'s for which Claim 2 is true. Note

that £7(0)>0forall 0 <5 <1.

Cramm 3: There exists a number £(0,) >0 such that £*(8) > &7(0,) when §is small

enough.

ProoF: If the claim is not true, then for each positive integer n,there exists a rate of
capital depreciation d(n)<1/n, such that £"(5(n))<1/n. Let & >1 be a given number,
and consider the sequence 6G¢’(5(n)),n=1,2,.. It follows from the definition of
£7(6(n)) that there is a competitive equilibrium of a truncated economy such that
f'(&(n) + & (n) < p™(6(n)), but

(&L () + K, (M) > p™(S(N)) — O™ (S(n))



where & (n) and x,(n) denote, respectively, the oil endowment per young individual and

the capital labor ratio — both in a particular period t. The preceding inequality together
with the fact that

fr (&L (M) + K, (M) < F(a,, () + &, (N) < p™(S(N))
allow us to write

P (B(M) — 0" (5(n) < f'(&..(N) + K, ()

(A.4.4)
< (G (M) + K3, (M) < ™ (S(N)).

Hence when n — oo, we have

(A4.5) amf ' (&,,(n) + x5, (M) = p™(0).

Next, note that because the sequence f'(&(n)+x,(n)),n=12,..., is bounded, it has a
convergent subsequence that we still denote by f'(&(n)+x,(n)),n=12,. Let
p =Limf'(&(n)+x,(n)). Because

F1EM) + R, (M) < F1(G,(N) + 4, (M) < p™(S()),

we have 0< p < p™(0).

If p=0, then f'(&(n)+x,(n)) is small —and a fortiori (& (n)+x,(n)) is large — when n
is large. Applying Lemma 3.(i1), we can then assert that (&.,,(n)+x,,,(n)) is large, i.e.,

f'(&.,,(nN)+x,,(n)) is small when n is large, contradicting (A.4.5). If p = p™*(0), then

min

when n is large, (& (n)+x,(n)) is close to €™ (o(n)), which in turn implies a large

savings offspring ratio generated by the maximizing behaviour of a young individual of
period t. A high savings offspring ratio in period t means a large energy endowment per

worker & ,(n)+x,,,(n) in period t+1, again contradicting (A.4..5). We have just shown

that 0 < p < p™(0).

Now note that 0< p < p™(0) implies €™ (0)<x =[f']"(p). The argument used to

prove Lemma A.2.(v) can also be used here to show that there is a lower bound for



min

&.,(nN)+x,,,(n) that is greater than €™"(0) and that applies uniformly for all large values

of n, again contradicting (A.4.5). ]

Cram 4: There exists a number p~ >0, such that p~ <& (J) when & is small enough.

ProOF: If the claim is not true, then for each positive integer n, we can find a rate of
capital depreciation o(n)<1/n, such that £ (d(n))<1/n. Let §>1 be a given number,
and consider the sequence fe (o(n)),n=12,.. It follows from the definition of
& (o(n)) that for each n, there exists a truncated economy with & (n) as the initial oil
endowment per young individual and x,(n) as the initial capital labor ratio, such that
(A.4.6) O (6(n)) < £'(&(N) + &, (M) < p™(5(N) — &7 (5(n))

but

(A4.7) f '(él(n) +x,(n)) < B (5(n)) < (& () +x,(n)).

It follows from the first inequality in (A.4.7) and the premise of the reductio ad absurdum

argument £ (o(n)) <1/n that

(A.4.8) Zimf'(£,(n) + x,(n))=0.

Because the sequence f'(&,(n)+x,(n)),n=12,..., is bounded, it has a convergent
subsequence that we still denote by f'(&(n)+x,(n)),n=12,.. Let
p =Limf'(&,(n) + x,(n)). We have

(A.4.9) 0<p<p™(0)—£(0,).

Note that the second inequality in (A.4.9) has been obtained by using (i) the second
inequality in (A.4.6) in the limit, (ii) /imy_ 0™ (d)=p""(0), and Claim 3. If p=0,
then f'(&,(n)+x,(n)) is small — and a fortiori (&,(N)+ x,(n)) is large — when n is

large. Applying Lemma 3.(ii), we can then assert that when n is large, we will have

E(N) +K,(N) < &) +x,(N), ie., F'(E(N)+x,(N)> F'(&(N)+x,(N)), and this last



result contradicts (A.4.7). We have just shown that 0 < p < p™*(0) under the premise of

the reductio ad absurdum argument.

Let x =[f']"'(p) and = f(x)—«f'(x). We have o> »™"(0) . For a young individual
whose labor income is @ and who obtains 1 as the rate of return to her savings, the
number of offspring she raises is strictly positive, according to Lemma A.2.(iv). Hence
by continuity, when n is large, the number of offspring raised by a young individual of
period 0 under the competitive equilibrium associated with nwill have a positive lower
bound that applies uniformly to all n. This result together with the fact that x is finite
imply that the energy endowment per young individual in period 1 is bounded above,

contradicting (A.4.8). Hence the claim is true. ]

We are now ready to prove Lemma A.4. Let &, with 6 < p~, be the rate of capital
depreciation for the truncated economies. If the initial energy endowment per young

individual &, + x,belongs to the interval [ (J), p™ (0)—¢"(5)], then using the
definition of £ (J) and &' (J), we can assert that

F(& +x) el (8), p™ (8) - & ()], (t>0),
and we can set t (&, +x,)=0. If f' (£, +x,)€) <& (0), then using the definition of
& (9), we can assert that f'(&, +x,) < f'(&, + k) . Furthermore, if

f'(& +x) ele (8), p™(6) - & ()],
then we can set t (&, + x,) = 1. Otherwise, we can continue the process to obtain a chain
of inequalities

fr (& +x)< ' +x)< ' (& +K,)<....
Iff'(& +x,)ele (0),p™™(5)—¢"(5)] for some finite t, then set t (&, +x,) =t
Otherwise, we obtain a monotone increasing sequence f'(& +«,),t=0,1,... having
& (9) as the limit. Because p~ <& (9), we will have f'(§ +x,)> p  in finite time,

and we can set t (&, + x,) =t for the first value of t this occurs. ]
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