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   The paper presents a synthesis of the economics of exhaustible resources and that of endogenous fertility 

in an overlapping-generations model. Renewable energy is produced by a backstop, while the consumption 

good is produced from energy – provided by the backstop or from a stock of fossil fuels – and labor. Along 

the equilibrium path, we show that the stock of fossil fuels might or might not have been completely 

depleted. Under the first possibility, the forward-looking competitive equilibrium can be computed 

recursively from the steady state of the economy. This is however no longer possible under the second 

possibility where the part of the resource stock left in situ serves as the oil bubble. In this case, long run 

equilibrium indeterminacy arises with a continuum of possible steady states. Also, the dynamic 

convergence to a steady state is far from being simply monotone, and might exhibit cyclical behavior, such 

as damped oscillation, limit cycles, etc.  
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1. INTRODUCTION 

    Malthusian stagnation – an explosive population and increasing scarcity of natural 

resources – has been the motivation behind numerous simulation studies that culminated 

in the publication by The Club of Rome a popular book entitled “The Limits to Growth,” 

authored by Meadow et. al. (1972), a team of leading MIT engineers. At first, academic 

economists objected to the trend projections used to simulate the future, arguing that 

human beings act rationally in the face of resource scarcity, and will solve the 

overpopulation problem by making the number of offspring part of the economic 

decision. Not long after the publication of this unpleasant prophecy, the oil crisis in the 

beginning of the 70’s rang the alarm, calling for further inquiries on a problem that seems 

to be real, and, therefore, cannot be disregarded cavalierly. 

   While the role of exhaustible resources in economic growth has almost then been 

thoroughly explored (see the well-known Review of Economic Studies 1974 

Symposium), the question of endogenous population and fertility decision has only 

attracted attention – once again – more recently (see Becker and Barro (1988), Barro and 

Becker (1989), Becker, Murphy, and Tamura (1990), Galor and Weil (1999, 2000), 

among others). To our knowledge, a synthesis of these two strands of literature has not 

been undertaken, despite the fact that such a synthesis certainly contributes to our 

understanding of the real world. This is the task that we propose to accomplish.   

   In the first strand of literature, most of economic models considered are of the Ramsey-

Koopmans type in which the size of the population – assumed to be exogenously given – 

has seldom been a concern. The basic questions addressed by this strand of the literature 

are: (i) How does the market allocate an exhaustible resource stock over time, and what is 

the time path of the resource price?   (ii) Is the market efficient in allocating the 

exhaustible resource over time? and (iii) What are the implications of resource 

exhaustibility in the context of economic growth? Some fine analyses to this panoply of 

questions can be found in Dasgupta and Heal (1974, 1979). The answers to the first two 

questions are that the resource price rises at the rate of return for holding assets – the so-

called Hotelling rule – and this would warrant allocation efficiency along the resource 

extraction path, with the resource being depleted asymptotically. As to the third question, 



whether economic growth is sustainable is the main focus. Introducing exogenous neutral 

technical progress, Stiglitz (1974) found that growth is possible with a stationary 

depletion policy determined by the saving rate given in the economy, even if the resource 

input is essential, For the case of Cobb-Douglas production in which the resource factor 

is essential, but not important (its share in the production is less than the share of labor), a 

non-degenerate steady state is also possible. In general, without exogenous technical 

progress, and when the resource is essential in the production process, the economy 

would sink in the long run to the trivial steady state in which both the resource and the 

capital stock vanish, and so does the consumption. This unpleasant outcome could only 

be avoided when the exhaustible resource can be substituted for by a reproducible capital.  

Also, the existence and characterization of the optimal solution have been fully analyzed 

– in the setting of an optimal growth model – by Mitra (1980), and more recently by Cass 

and Mitra (1991) for a wide range of technological possibilities, allowing for unbounded 

consumption in the long run. For a comprehensive survey of this strand of literature, see 

Krautkraemer (1998). 

    With respect to the second strand of the literature on economic growth in which the 

size of the population is endogenous, only reproducible capital has been considered as a 

factor of production besides labor. In the class of models that follow the Ramsey-Solow 

tradition in which all economic decisions are conferred to a single infinitely lived agent (a 

planner, or the head of a dynasty), the population size tends to a stationary level; see, for 

example Razin and U Ben-Zion (1975) or Nerlove, Razin, and Sadka (1987). When 

capital is human – as in Barro and Becker, op. cit. – rather than physical, the appropriate 

model is of the Uzawa-Lucas variety (see Lucas (1988)). Using also the dynastic-utility 

formulation, these authors showed that the economy exhibits exponential growth at a rate 

equal to a positive endogenous fertility rate. Works in this direction have been carefully 

surveyed in Tamura (2000). In the overlapping-generations framework, Samuelson 

(1975) investigated the optimal size of the population in the long run and pointed out that 

the incentive to maintain an increasing fertility rate would ultimately lead to an 

inefficient allocation outcome. Erhlich and Lui (1991) further discussed this question, 

and a concise literature survey was provided in Erhlich and Lui (1997). 



   Surprisingly, there are not many studies bringing together natural resources and 

population in a comprehensive synthetic model of economic growth. Exceptions are 

Nerlove, Razin, and Sadka (1986) and Eckstein, Stern, and Wolpin (1988). These papers 

focused on indestructible land as a production factor. Nerlove et al. relied upon the 

dynastic-utility approach to show the efficiency of the market outcome with endogenous 

population, while Eckstein et al. used the overlapping-generations framework, and 

demonstrated that as long as the fertility decision is taken into account, the population 

growth will not be excessive; the market outcome will be efficient; and the economy will 

reach a stationary long run consumption level above the Malthusian subsistence level. 

The value of land depends on the time path of land per capita and, since land is fixed in 

quantity, the problem of over-accumulation of capital is simply ruled out. On the other 

hand, Nerlove (1993) is, to our knowledge, the only study that pieces together the use of 

a renewable resource and the fertility decision. Studies linking exhaustible resources with 

fertility decisions are simply non-existent; on this point, see Nerlove and Rault (1997), 

and Robinson and Srinivasan (1997). 

    In this paper, we make use of the overlapping generations (OLG) model à la Allais-

Samuelson-Diamond tradition to formulate and analyze the relationships among 

exhaustible resources, technology transition, and endogenous fertility (see 

Geneakoupoulos and Polemarchakis (1991) for the present state of the art).   Four classes 

of economic agents co-exist in each period: a young generation, an old generation, 

competitive firms producing a consumption good, and competitive firms producing 

renewable energy. Renewable energy is produced by a backstop from capital, say solar 

collectors, while the consumption good is produced using energy – provided by the 

backstop or from a stock of fossil fuels – and labor. The consumption good can also be 

used as investment goods to augment the stock of backstop capital. While oil can be 

extracted at negligible cost, its ultimate stock is limited. The backstop, on the other hand, 

can provide a perpetual flow of energy. However, energy produced by the backstop 

requires capital, and as the stock of fossil fuels dwindles, it is imperative that backstop 

capital be accumulated to avoid a drastic cut in consumption. Thus the transition from oil 

to backstop becomes an interesting question.  



     Economic agents interact on five markets – oil, solar energy, labor, capital, and the 

consumption good. The two real assets in the economy – capital and oil – represent the 

only possible forms of saving, and in any period they are owned by the old generation of 

that period. An individual works when she is young, and retires when she is old. She has 

to allocate her wages among current consumption, raising children, and saving for old-

age consumption. The lifetime utility of a young individual depends on her current 

consumption, her old-age consumption, and the number of offspring she raises, and these 

variables are assumed to be separable in the lifetime utility function. Furthermore, future 

utilities of consumption are discounted, and the single-period sub-utility function of 

consumption is assumed to be concave, strictly increasing, and satisfy the Inada 

conditions, i.e. the marginal utility of consumption tends to infinity (zero) when 

consumption tends to zero (infinity). As for the sub-utility function of offspring, it is 

assumed to be concave, and is strictly increasing as the number of offspring rises from 0 

to a saturation level. However, unlike the single-period sub-utility function of 

consumption, the marginal utility of offspring is assumed to be finite when the number of 

offspring is 0. It is this assumption that gives our model a Malthusian flavor: when wages 

are low, the birthrate will be almost 0. 

   The literature on exhaustible resources under the OLG framework is rather sparse, 

maybe because studying thoroughly the extraction of exhaustible resources in this 

framework is too involved. Kemp and Long (1979) and, lately, Olson and Knapp (1997) 

are exceptions, Kemp and Long assumed that the resource is not essential in the 

production process, and showed that in steady state the resource could be partially 

depleted, inducing, therefore, a form of inefficiency in this case. On the other hand, 

Olson and Knapp considered the exhaustible resource as an essential factor of production. 

They established the existence of an equilibrium and provided a characterization of the 

market outcome. Market efficiency in this study is warranted; however, the economy 

would contract and ultimately collapse into the trivial steady state of zero output in the 

limit. The convergence to this degenerate state need not be monotone, but may happen in 

damped oscillations, and the pattern of resource extraction as well as the time path of the 

resource price could possibly exhibit non-classical behavior. Quite recently, Agnani et 

.al. (2003) extended the Olson and Knapp model by introducing exogenous technological 



progress and producible capital as a factor of production together with an exhaustible 

resource. With logarithmic additive utility and Cobb-Douglas production, they found that 

the economy exhibits a positive steady-state growth rate if the labor share is high enough, 

and this balanced growth path is efficient. 

   Notwithstanding the afore-mentioned works, we impose no specific functional form in 

our analysis. In our model, children are treated as a consumption good, and the number of 

offspring in each period is the result of the lifetime utility maximization of the young 

generation of that period. Our formulation thus stands in contrast with the dynastic 

formulations of Becker and Barro (1988) and Barro and Becker (1989) in which the 

utility of a parent depends on her own consumption, the number of offspring she raises, 

and the total utilities of all her offspring, and in which the decisions on fertility are made 

at the beginning of time by the head of the dynasty. Unlike the dynastic-utility 

formulation, which assumes perfect foresight on the part of the head of the dynasty and to 

whom the task of inter-temporal resource planning is assigned, the overlapping-

generations model provides a decentralized setting. Our model is thus somewhat more 

market oriented than the central-planning view; the latter requires perfect foresight on the 

part of the head of the dynasty and a binding contract across generations.  In addition to 

the fact that under the OLG framework the society is composed of mortal individuals 

who can trade through their lifetime, and with resource assets which may act as stores of 

values for saving purpose, we claim that our modeling strategy is more appropriate. At 

least, it does not go against the strong empirical evidence (see J. G. Atonji et.al. (1992)) 

which does not support the hypothesis that members of extended families are 

altruistically linked in the way presumed by the dynastic type model. 

    As we have indicated earlier, if there is no possibility of substitution for an essential 

exhaustible resource, say oil, used as an input in the production process, the economy 

might glide to the trivial steady state of zero consumption in the long run, a regretful 

doomsday. In order to reach the state of economic sustainability, the problem of 

technology transition emphasizes the possibility of substituting for the exhaustible 

resource with an everlasting source of energy input, say solar energy, which could be 

made available through investments in the so-called backstop technology (see, for 

example, Hung and Quyen (1993, 1994) for partial equilibrium analyses, and Tahvonen 



and Salo (2001) in the context of economic growth). In these models, oil is used first, 

with solar energy gradually being brought in to substitute for oil. By the time the oil stock 

is completely depleted, the backstop capital will have reached the Golden Rule level, and 

its marginal productivity is equal to the interest rate. Can these results be carried over into 

a dynamic general-equilibrium framework, especially when the population is not a 

datum, but endogenous in the sense that it results from fertility decisions made by 

economic agents?  

    The introduction of endogenous fertility into an OLG model of exhaustible resources 

and economic growth changes the nature of the problem of resource depletion in two 

fundamental ways. First, it is not the resource scarcity in absolute terms, but the resource 

scarcity per capita that matters. Although the absolute size of the remaining resource 

stock necessarily declines through time due to extraction, the resource endowment per 

worker might rise or decline through time, depending on the birthrates chosen by the 

successive young generations, and this leads to a more general Hotelling rule which is 

related to the birth rate (the biological interest rate). Second, the temporary equilibria can 

no longer be computed recursively, and the existence of a competitive equilibrium 

becomes problematic, especially because the market size becomes endogenous with 

agent’s fertility decision. Furthermore, a birthrate that is arbitrarily close to 0 in one 

period leads, in the next period, to an abundance of resource or capital endowment per 

capita, and this means that many limiting arguments must be deployed to prevent the 

population from collapsing in finite time.  

    The mechanism that operates in our model can be described as follows. In any period, 

if the resource scarcity per capita – the endowments of oil plus capital per worker – are 

high, the energy input per worker will be high, leading to a high wage rate. The high 

wage rate in turn induces a high level of current consumption, a high level of future 

consumption, and more importantly, a number of offspring close to the saturation level – 

assuming that the cost in terms of real resources of raising a child is constant. The 

endowments per worker in the next period, although still high, will be lower than that of 

the current period. On the other hand, when the resources per capita are scarce, wages 

will be low, with the ensuing consequences that current consumption, future 

consumption, and fertility will also be low. In particular, if wages are extremely low, 



most of the wages will be devoted to consumption, and fertility will be extremely low. 

This last result follows from the assumption that the Inada conditions are imposed on the 

single-period sub-utility function of consumption, but not on the sub-utility function of 

offspring. Thus when the wage rate descends to a critical level, fertility will decline to 0, 

leading to an abundance of resources per capita in the next period. An abundance of 

resources per capita in the next period, as already argued, leads to a high fertility rate in 

that period, and allows the population to bounce back.  

    When fossil fuels are abundant at the beginning, a competitive equilibrium in our 

model consists of three phases. In the first phase, the energy inputs used in the production 

of the consumption good come solely from oil. If the population is stable or growing in 

the long run, oil alone cannot sustain the economy indefinitely, and the backstop must be 

brought into use at some time to provide part of the energy requirements of the economy. 

The time interval that encompasses the introduction of the backstop and the end of 

extraction activities constitutes the second phase of a competitive equilibrium: the phase 

of technology transition. The third phase of a competitive equilibrium begins after all 

extraction activities have been terminated, either due to oil exhaustion or because the 

competitive equilibrium in question involves incomplete oil depletion. 

     Incomplete oil depletion merits some elaboration. In traditional models of resource 

extraction – à la Hotelling or in the tradition of optimal growth – the resource is always 

presumed to be completely depleted, and the equilibrium to be efficient; the only concern 

is to see how the resource is exploited through time. In an OLG model, this presumption 

turns out to be unfounded. If the time horizon is finite, then any amount of oil that 

remains at the beginning of the last period will be utilized as part of the energy input used 

in the production of the consumption good. Furthermore, an economy with a finite time 

horizon is an Arrow-Debreu economy, and a competitive equilibrium of such an 

economy is Pareto optimal according to the first theorem of welfare economics.  

However, when the time horizon is infinite, and agents make plans only for the two 

periods of their life cycles, we cannot take for granted that the resource stock will be 

completely depleted or that the equilibrium will be efficient.  In her lifetime plan, an 

agent does not consider the impact of her decision on the welfare of future generations. 

Furthermore, when the time horizon is infinite, a young individual can always invest in 



oil, and then sells the oil she owns to the young generation or the competitive firms of the 

next period.  The fact that the resource is exhaustible has no bearing on her investment 

decision, and as long as the price of the resource rises through time at the market rate of 

interest, she is quite willing to hold this asset so that the resource stock will only be 

partially depleted. The part of the resource stock left in situ unexploited serves as a 

financial bubble, and in steady state the resource price – according our modified version 

of the Hotelling rule – will rise geometrically through time at a rate equal to the marginal 

product of capital, which is also the steady-state birthrate.  

    Besides incomplete depletion, we should also mention that, unlike the planning 

dynastic framework in which one sources of energy are used sequentially, oil and 

backstop might be used simultaneously in the production process under the OLG 

framework. Also, it is remarkable, but not surprising, that the introduction of oil into the 

model gives rise to multiple equilibria with complex dynamics, which includes the 

possibility of convergence to a steady state through damped oscillation, limit cycles, etc.  

    The paper is organized as follows. In Section 2, the overlapping-generations model is 

presented. In Section 3, we study preliminarily the competitive equilibrium of an 

economy which does not have any oil left, and which is endowed only with backstop 

capital. We demonstrate the existence of a unique forward-looking temporary equilibrium 

as well as the existence of at least a steady state under infinite time horizon. We then 

show the possibility of oscillation and of a 2-cycle in the dynamic convergence to a 

steady state. To support all these findings, we provide a numerical example for each case. 

In Section 4, we focus on an economy endowed with both oil and backstop capital and 

state the existence of a competitive equilibrium under infinite horizon. In Section 5, we 

characterize the equilibrium oil extraction path, and provide the conditions under which 

the oil stock will be exhausted in finite time. In Section 6, we discuss the possibility of 

incomplete oil depletion, and show that there might exist infinitely many steady states in 

which the oil stock is only partially depleted. Furthermore, we show that if the rate of 

capital depreciation is low, then in addition to the equilibrium with incomplete 

exhaustion there also exists an equilibrium in which the oil stock is depleted in finite 

time. Thus there might exist multiple equilibria. Moreover, in the long run, the birth rate 

is lower under incomplete than under complete oil exhaustion. In Section 7, we bring 



together all the disparate elements into a synthetic characterization of the competitive 

equilibria that emerge from our model. Section 8 contains a summary of our major 

findings and some concluding remarks. 

 

2. THE MODEL 

2.1. The Technology 

    The perfectly competitive firms produce a consumption good from two inputs – labor 

and energy – according to a standard neoclassical production function, say  

where Y denotes the output; 
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   In our economy, energy inputs come from two sources: oil and a backstop, say solar 

energy. While oil can be extracted at negligible cost, its ultimate stock is limited. The 

backstop, on the other hand, can provide a perpetual flow of energy. However, harnessing 

the Sun’s energy requires investments in backstop capital, say solar collectors. In any 

period, the amount of solar energy harnessed is assumed to be proportional to the stock of 

backstop capital  and, to simplify the exposition, we shall assume that the 

proportionality constant is equal to unity, i.e., one unit of backstop capital produces one 

Btu. Also, we shall assume that backstop capital depreciates at rate 
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   If  is the amount of oil – also measured in Btu’s – extracted for use as part of the 

energy input in period t , and  is the stock of backstop capital in that period, then the 

total energy input used in period t  is 
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used in period  then the output of the consumption good in that period is 

 We assume that the consumption good can also be used as 

investment goods to augment the stock of backstop capital. As time goes on, and the oil 

resources dwindle, it is imperative that investments in the backstop be made to prevent a 

drastic reduction in consumption. The accumulation of backstop capital only influences 

the output of the consumption good indirectly through the amount of solar energy 
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delivered by the backstop sector to the economy. Because there is only one kind of 



capital in the model, namely backstop capital, we shall from now on refer to backstop 

capital simply as capital.  

2.2. Economic Agents 

   In the economy, four classes oexist in each period: a young 

beginning of each period

of economic agents c

generation, an old generation, competitive firms producing the consumption good, and 

competitive firms producing solar energy. These economic agents interact on five 

markets – oil, solar energy, labor, backstop capital, and the consumption good. An 

individual works when she is young. She allocates her wages among current 

consumption, raising children, and saving for her old-age consumption. The two real 

assets in the economy are oil and capital, which represent the only possible forms of 

saving. 
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amount of oil she buys as investment, and t e amount of capital she buys – also for 

investment purposes. The lifetime utility associated with such a lifetime plan is assumed 

to be given by 
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as a consumption good from their viewpoint.
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assumed to be concave and increasing, current consumption, old-age consumption, and 

offspring are all normal goods. Furthermore, because it is costly to raise children, the 

optimal number of children is strictly less than .maxb   

   The problem of a young individual in period t  is to find a feasible lifetime plan that 
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Furthermore, as 1+tr  rises, real lifetime income also rises with .1+tr  The income effect 

income effect reinforces the substitution effect, and causes old-age consumption to rise 

                                                                                                                                                 
which seems to be untenable. Furthermore, for an economy that is sustained only by renewable energy 
resources, homothetic preferences imply that from any initial condition the economy enters a steady state 
after one period: the transition to its steady state level of the birth rate lasts exactly one period, and this also 
seems unreasonable. On the other hand, it can be shown that homothetic preferences allow for a much 
simpler proof of the existence of a competitive equilibrium for the case the economy begins with a positive 
stock of fossil fuels. 



even more.. However, for current consumption and the number of offspring, the net 

impact is ambiguous because the substitution effect and the income effect operate in 

opposite directions. The net impact on ts  is thus ambiguous although 1
1+tc  is increasing in 

.1+tr  To obtain sharper results, we shall make the following assumption: 

 

ASSUMPTION 2: For a young individual, current consumption, old-age consumption, and 

offspring are gross substitutes 

sumption 2 is often made in overlapping-generations models    As an

ic level; see, fo

d looks quite 

nocuous at the macroeconom r example Azariadis (1993, Section 7.4). It 

es will decline when the discounted price of future 

in

follows from this assumption that the current consumption of a young individual and the 

number of offspring she rais

consumption declines.  Hence saving is an increasing function of the rate of interest. On 

the other hand, for a young individual, current consumption, old-age consumption, and 

offspring are all normal goods. Thus we expect ,0
tc  ,1

1+tc  and tb  to rise with 

.tω Furthermore, because ,1
1

1 ttt src ++ =  saving also rises with .tω  

   Now according to Assumption 1, the Inada condition is imposed on the sub-utility 

function of consumption, but not on the sub-utility function of offspring. Thus we can 

expect that when the labor income of a young individual to w, she w ll choose not to 

e children. To determine the critical level of labor incom

 is o lo i

rais e that triggers the extinction 

of the population at the end of the following period, let 

(5) }{ .1 that given  ,0)( 1
min δωδω −=>= +ttt rbInf  

   As defined, )(min δω  is the critical wage rate at or below which a young individual will 

choose not to raise children, given that the rate of return to saving is equal to ,1 δ−  its 

minimum possible l vel. Furthermore, if min δω is the labor income )( e of a

individual, then using Assumption 2, we can assert that for any rate of return above the 

l

 young 

minimum leve  δ−1 , the individual still chooses not to raise children. Let )(min δe  denote 

the energy input per worker that gives rise to the critical wage rate ).(min δω  These two 

critical variables are linked by the relation: )).((')())(( minminmin δδδω efeef − As 

),(min δωω ↓  the number of offspring she raises will tend to 0 while the saving for old-

)(min δ =

t



age consumption is bounded below and away from 0, which s that 

),,(/),( 11 ++ tttt rbrs

implie

ωω  the saving/offspring ratio, will tend to infinity is property 

that prevents the population from collapsi me 

)( , the birthrate approaches 0, but the saving for old-

age consumption – although low – is still bounded below and away from 0, allowing for a 

e high saving/offspring ratio means a high level of energy 

wage rate in the next period leads to a high birthrate in that period, which gives the 

population a chance to bounce back. The saving/offspring ratio also tends to infinity 

when labor income tends to infinity. The reason is that the birthrate, although rises with 

income, remains bounded above by the saturation level maxb  while saving increases 

without bound. Thus when the wage rate is high, the cost of raising children becomes a 

negligible fraction of labor income, and most of the labor income is spent on current 

consumption and on investments to provide for old-age consumption. Thus, we can 

expect the curve ),(  ),,(/),( min δωωωωω >→ rbrs  to have a U-shape.  

2.2.3. Solar Energy Producers 

   Solar energy is produced by competitive firms from capital. The representative solar 

energy producer solves the following profit maximization problem: 
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subject to the technological ,0## ≤− KS #K  and  represent, 

 In each period  the representative firm in the consumption good sector solves the 

following profit maximization problem: 

#S

 ][max ),,,( LSQY tttYLSQ ωϕφ −−−  

respectively, this firm’s demand for capital and its output of solar energy.  

2.2.4. Producers of the Consumption Good 

,t

represent, respectively, the oil input, the solar energy input, the labor input, and the 

output of the consumption good. Let 

subject to the technological constraint ,0),( ≤+− LSQFY  where  and ,Q  ,S  ,L Y  
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 be a solution of the preceding profit 

aximization problem. We have (i)  if m Q



,tt ϕφ =  the mix ),( tt SQ  is indeterminate, although the sum t QE + tt S=  is uniquely 

determined.  

2.3. Definition ve Equilibrium 

   Let ∞= 0),,,( ttttt ρωϕφP  be a price s . An tion in d by  list of 
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. COMP TITIVE EQUILIBRIUM FOR AN ECONOMY WITHOUT OIL 
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produc 0, the 

price of renewable energy is equal to f capital. Thus, we shall conduct our 

explicitly m

renewable energy.  

quilibrium rental rate of capital and the equilibrium wage rate are 

given, respectively, by 

es one Btu, and because in equilibrium the profit in the backstop sector is 

 the rental rate o

analysis in terms of the rental rate of capital without entioning the price of 

3.1. The Capital/Labor Ratio 

   When there are no oil resources, all the energy needs of the economy are provided by 

the backstop. To prevent the population from becoming extinct in period 1, we shall 

assume that  ),(min
0 δκ e>  where we have let ./ 0

000 NK=κ  
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 represents the rental rate of capital in period 1 generated by the 

maximizing behavior of a young individual of period 0, given that 0ω  is her labor income 

and  is the rental rate of backstop capital that this individual expects to prevail in 

must save for her old-age consumption, her capital investment is always positive even if 

urn is 0;
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source of renewable energy – provided by a backstop technology – there exists a unique 

competitive equilibrium. 

 

 thus constructed, 

tes the unique competitive equilibrium for an economy without oil resources. We 

summarize the result just obtained in the following proposition, which bears resemblance 

to Theorem 13.1, found in Azariadis, op.cit, page 108.  

PROPOSITION 1: For an economy that has no oil resources, but that is sustained by a 

3.3. Steady States for an Economy without Oil Resources: Existence and Uniqueness 

ritical price of energy at or above which a young individual will choose not to 
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ote that as  the capital labor ratio and the wage rate associated with Next, n  ,00 ↓ρ ,0ρ  

namely ,0κ  and ),( 0ρω  both tend to infinity. Because the current wage rate tends to 

infinity, the current consumption and the future consumption of a young individual both 

thetend to infinity – even when the rental rate of capital in the next period is 0. Also,  

number of offspring raised by a young individual will rise to the saturation level .maxb  

Hence the capital labor ratio generated by the maximizing behavior of a young individual 

of period 0 will tend to infinity, which implies that the rental rate capital in period 1, 

namely ),( 0ρG  will tend to 0. Finally, note that as ,00 ↓ρ  the capital labor ratio 

generated by the maximizing behavior of a young individual, say ,1κ  satisfies the 

following inequality: ]./][/)([/)( max
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)),(,0( max
0 δρρ ∈
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finite ll make the following assumption: 

ASSUMPTION 3: We have ).()( maxmax δρδ <G   

.0

   Assumption 3 implies t y 

if the rental rate of capital is currently below the critical level ),(max δρ  it will remain 

below )(max δρ  in the next period. If ),()(' max
0 δκ Gf >  then the eq m rental rate of 

capital will enter the interval  ,0[ maG onfining set, in period 1, and will 

never leave the interval after th  0

uilibriu

)](x δ

ρ  rises from 0 to ),(max δρ  the curve G rises 

from the origin and stays above the 45-de ee line initially. es the maximum 
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point  on the horizontal axis when 0
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)(max δρ ρ  reaches ence it must cross the 

45-deg  at least once, and the rental ra  a crossing represents the 

rental rate of capital in a steady state. We have just established the following proposition:

   

PROPOSITION 2: For an economy that has no 

)(max δρ . H

ree line te of capital at such

oil resources, but that is sustained by a 

δ  – first rising from 0, then 

 possible rich dynamics. Depend

3.4. Numerical Example 

   Suppose that the lifetime utility function is   

backstop technology, there exists at least a steady state. 

    The shape of the curve 0 ),(: max
000 ρρρρ ≤≤→GG )(

returning to 0 – suggests a ing on the preferences, the 

technology, and the values of their parameters, convergence to a steady state might be 

monotone or in damped oscillation. There might even exist cycles. 
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nd the output produced by one worker – as a function of the energy input – is assumed 

are: =a

to be given by .)( aeef =  For the simulation exercise, the numerical values chosen for 

the parameters .75.0 ,9 ,25.0 ,65.0 ,25 ,5.0 ,5.0 , ======= δγβσα bh  

α

4 max



Also, the initial backstop capital labor ratio is taken to be 0.09.0 =κ  The following

his nume

 

figure depicts the curve max
000 0 ),(: ρρρρ ≤≤→GG for t rical example. 
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FIGURE. The transition of the rental rate of capital from one period to another 
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ble: 

CONVERGENCE TO STEAD N DAMPED OSCILLATION 

9(a  

Period 

ur calculations show that the critical energy input per worker is ,07.0min =e  wh

yields the following values for the critical wage rate and the criti rate of 

backstop capital: 53.0min =ω  and .50.7max =ρ  Also, ,89.2 maxmax ρ<=G  and 

Assumption 3 is sat largest terval in ate of 

backstop capital, i.e., the price of renewable energy, evolves is ].89.2 ,0[] ,0[ max =G  The 

results of the simulation exercise are presented in the following ta

TABLE I 

cal rental 

isfied. The confining in which the rental r

Y STATE I

0.0,75.0 ,9 ,25.0 ,65.0 ,25 ,5.0 ,5.0 ,4 0
max ========= κδγβσα bh )

tκ (capital/labor 

ratio) 

tρ (rental 

rate of 

capital) 

tω (wage (birth 

rate) 

tb

rate) 

6.667 

1 38.53 0.322 1  2.41 6.306 

2 0.45 2.993 1.34 0.714 

3 0.83 2.201 1.82 1.363 

0 0.09 0.6 0.003 



4 0.59 2.600 1.54 0.988 

5 0.69 2.406 1.66    1.157 

6 0.64 2.503 1.60 1.069 

7 0.66 2.455 1.63 1.112 

8 0.65 2.479 1.61 1.090 

9 0.66 2.467 1.62 1.100 

10 0.65 2.473 1.62 1.096 

11 0.66 2.467 1.62 1.098 

12 0.66 2.471 1.62 1.097 

 

 The economy converges to a steady state in about 12 periods, and the convergence is in 

iod.  If the cost of 

  

damped oscillation. The capital labor ratio enters a small neighborhood of its steady state 

value in about 5 periods. The rapid convergence is due to the assumption on the sub-

utility function of offspring. When the capital labor ratio is low, the low labor income 

induces a young individual to give more weight to future consumption at the expense of 

the number of offspring, resulting in a higher capital/labor ratio in the next period. In the 

simulation exercise, the initial capital labor ratio has been chosen to be rather low, which 

induces an initial optimal birth rate of 0.003. The capital labor ratio in period 1 is 38.53, 

which is high, and the resulting high wage in that period induces the young generation of 

that period to raise more children. The number of offspring raised by a young individual 

of period 1 is 6.306, which helps to drive down the capital labor ratio in period 2. The 

special features of the sub-utility function of offspring thus have a stabilizing influence 

on the economy, and prevent the population from an abrupt collapse.  

   In the long run, the population grows at the rate of 9.743% per per

raising children is high, then the marginal utility offspring is low, or the productivity of 

backstop capital is low, the steady state might involve a contracting population, i.e., a 

steady birth rate strictly less than 1. In this case, the economy will become extinct in the 

long run. Indeed, if the saturation number of offspring is 8max =b  instead of ,9max =b  the 

steady-state birth rate will be 0.96. A lower value of the saturation number of offspring 

implies that parents have less love for children, which leads to a birthrate below the 

replacement rate. If the saturation number of offspring assumes the value of 



,28234.8max =b  then the steady-state birthrate is ,1=b i.e., the population becomes 

 run. If the parameters assume the following values: 

10 ,45.0 ,75.0 ,15 ,5.0 ,75.0 ,45.7 max ======= γβσα bha

stable in the long

,0.1 , =δ  

then the economy has a stable two-cycle ( ) ( ),330.5 ,610.4***, =ρρ  with the rental rate 

610 and 5.330. In terms of

o periods.  

. EXISTENCE OF COMPETITIVE EQUILIBRIUM FOR AN ECONOMY WITH OIL 

   Suppose that the economy beg  in state  with 

al oil endowmen

of backstop capital alternating between 4.  birthrates, the two-

cycle is ( ) ( ),0.623 1.612,***, =bb  which indicates that the population will grow by 0.4% 

every tw
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T  be a non-negative integer. If we truncate our economy at the end of period ,T  

then we obtain an economy with a finite time horizon that we call the truncated econom  
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   (vi) .0
TTc ω=  

   Obse t .T  

Because the problem ends at the end of period ,T  a young individual of this period has 

no future to plan for and thus will neither save no aise children; she will consume all the 

wages she earns. The pair 

r r

( )TT A,P  is said to constitute a competitive equilibrium for the 

truncated economy with time horizon T if the following market-clearing conditions are 

satisfied:  
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a truncated economy and the fact that all the equilibrium prices are positive are proved by 

using the traditional Debreu-Gale-Nikaido technique. The existence of a competitive 

equilibrium under infinite time horizon – as asserted by Proposition 3 – is then proved by 

using Cantor’s diagonal trick to show that in the limit, when ,∞→T  a sequence of 

truncated economies converges, and its limit is a competitive eq  under infinite 

time horizon. In Proposition 3, we let ,/ 0
ttt NX=ξ  ,/ 0

ttt NK=κ  and 0/ ttt NQq =  denote, 

respectively, the equilibrium oil endo al labor 

ratio, and the equilibrium oil input per worker – all in period ,....1,0,

uilibrium

wment labor ratio, the equilibrium capit

=tt  

 

PROPOSITION 3: Consider an economy with a positive stock of oil and possibly a positive 

 stock of backstop capital. This economy has a competitive equilibrium, say ( ),AP,  with  
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∞
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with the following properties: 

d is positive. 

n the price of oil and the price of renewable 

     

 equality holding for the second inequality in (9

5. OIL EXTRACTION UNDER COMPETITIVE EQUILIBRIUM 

   To allevi ior of the 

4: For , where is a constant 

   Assumption 4 asserts that the earnings of the factor labor relative to the earnings of the 

EMMA 3: (i) If 

   (i) The birthrate in each perio

   (ii) The following relationship holds betwee

energy 

(9) }{ ( ) ,',min0 maxρφκρρφ <≤+==< tttttt qf    ,...),1,0( =t  

with ) if .0>tq   

 

ate some of the technical arguments concerning the limiting behav

economy when the energy endowments/worker ratio is extremely high or close to the 

critical level ),(min δe  we shall make the following assumption 

ASSUMPTION any ,0>e  we have (')(')( eefbeefef
o

≤− )
o
b

satisfying .1 maxbb <<  
o

factor energy are not very high. The following lemma gives some properties of the 

competitive equilibrium.  

 

L tξ  is large, but tκ is not, then  is will be large, and a young individual tq

of period t will put all her saving in oil. (ii) If tt κξ +  is large, then ttq κ+  is large, and 

tb is close to .maxb  Furthermore, 11 ++ + tt κξ is also large, but .11 ttttt tq κξκκξ +≤+ ++   

PROOF: If large, but tq  is  the energy input ,  

+<

   tξ  ttq κ+

will be boun ed above, which in turn implies that the equilibrium wage rated  tω  is 

bounded above and the equilibrium price of oil tφ  is bounded below. Hence the value of 

the remaining oil stock per worker at the end of period ,t  namely ),( ttt q−ξφ  will exceed 

her labor income, and this situation cannot arise in equilibrium. W t proved the 

first part of (i).  

   To prove (ii), 

is  not, then  per worker, namely 

e have jus

suppose that tt κξ +  is large. If tκ  is large, then obviously the energy 

input per worker ttq κ+  is also large. If tκ  is not large, then tξ  must be large, and 



according to the first part of (i proven, tq  mu t be large. The high energy input per 

worker in period t  to a high wage ra in that period, whic  will induce a young 

individual of period t  to consume more at the present time and raise a number of 

offspring close to the saturation level. To show that 11 ++

) just s

leads h te 

+ tt κξ  is large, suppose that 

11 ++ + tt κξ remains bounded above when tt κξ +  tends to infinity. In this case, the price of 

energy in period 1+t  will be bounded below, and the ca me of an old individual 

1+t  will be bounded above. In a case, a young individual of period t  can 

certainly increase her lifetime utility by increasing her saving without bound as her labor 

income rises without bound, contradicting the premise that 11 ++

pital inco

in period  such 

+ tt κξ  is bounded above. 

To show .11 tttttt q κξκκξ +≤+<+ ++ note that  

(10) [ ] ttttttttttttttt bqfqfbs /))('/)(' / 111 t ωκκκξφκκξφ <++++=+= +++  

      (
o
b<

at the last ineq

e f

qf

wher

('/1+

ttttt bqfq κκ ++  

e th uality has been obtained by invoking Assumption 4. It follows 

sult 

,/)(')

from the two strict inequalities in (10) and re )(' ttt qf κφ +≥ that 

(11)  ).](/[)]('/[)]('/[)]('/[ 1111 ttt

o

ttttttttttt qbbqfqfqf κκκξκφκκξ +<+++≤++ ++++  

   Now recall that when tt κξ +  is large, ttq κ+  will be large,  will be close to 

ore, when 

 and tb

ttq κ+  is large, t )(' tqf κ+

(11) that ,)]('/111 tttttt qf[ 1 t κκκξκξ ++<+ +++  as desired. 

t

+

   Finally, to prove the second part of (i), suppose that ξ  is large, but tκ  is not. Then tq  

is large, a 1  is also larg

.maxb  Furtherm   will be small, and it follows from

t q +<

ccording to the first part of (i), and 1 ++ + tt κξ ccor irst 

part of (ii). Furthermore, the price of energy in period 1 +t is higher han the price f 

energy in period t, i.e., 

(12) 11111 ttttttt qffqf κκξκφ =+>+≥+≥ +++++

If ,01 >+t

 

κ  there are tw

e, a ding to th

 t o

t .)(')(')('

remains bounded when 

φ

o cases to consider: (i) 1+tκ  is large when tξ  is large and (ii) 1+tκ  

tξ  becomes indefinitely large. In case (i), the rental rate of capital 

 namely in period ,1+t ),(' 111 +++ += ttt qf κρ will be close to 0, which implies that the rate 

of return to capital investment will be close to .11 ≤−δ  However, according to (12), we 



hav ,1>te +t /1 φφ  i.e., for a young individual of period t, the rate of return to oil 

investment is greater tha  1, and it will not be optimal for her to invest in oil. Case (i) 

thus canno ise in equ i), 1+t

n

t ar ilibrium. In case (i ξ  will be large, which implies that the 

price of energy in period 1+t  will be low, and investing in capital will yield a rate of 

return , close to 1 δ−  which, again according to (12), is also strictly lower than the rate of 

return to oil investment.   

                              ■ 

LEMMA 4: There exist two values, say and ,  which satisfy )(0 , 

and which do not depend on the rate of capital depreciation, such that 

,)(' <+< ρκρ ttqf  for 

+ρ

all  

−ρ max δρρρ <<< +−

+− ,...1,0=t  

rate tω  will be in a small right neighbo od o e critical level g 

offspring ratio chosen by a young individual of period t  will be high, which, according to 

   PROOF: Note that when m ig ho  )(max δρ  the equilib tρ

),(min δω

1+t , i.e., .1 tt ρρ <+  A limiting 

dargument3 can then be use  to assert the existence of .+ρ  Now for ,0 +<< ρρ t  if tρ  is 

small, then ttq κ+  is large, and according to Lemma 3, ttq κ+ > 1+t1+ +tq κ , leading to  

.1 tt ρρ >+  A limiting argument can then be used to asse t the existence of .−ρ             ■ 

 

   From the perspective of a young individual, the deci n on wheth in o  or 

capital depends on the rates of return of these assets. For capital investment, a high rate of 

akes this asset relatively more attractive than oil. Thus when the rate of 

r

 is in a s all ne hbor od of rium wage 

rho f th and the savin

Lemma 3, leads to a lower value of energy in period 

sio er to invest il

depreciation discourages capital investment, while a low rate of depreciation, ceteris 

paribus, m

epreciation is low, we expect capital investment to be favored over oil investment; the 

                                                

d

successive generations prefer to invest only in capital, and we can expect that the oil 

stock will be exhausted in finite time. The following proposition confirms this intuition. 

 

PROPOSITION 4: If the rate of capital depreciation is not too high, then there exists a 

competitive equilibrium under which the oil stock is exhausted in finite time. 
 

3 For more details on the technical arguments, see the technical addendum.  



Furthermore, there exists no competitive equilibrium under which the oil stock is 

exhausted asymptotically.   

   PROOF: First, we claim that if the rate of capital depreciation is not too high, say 

,−< ρδ then there exists an integer T such that for any integer TT > and any competitive 

equilibrium of the truncated economy with time horizon ,T  the oil stock is exhausted in 

or before the penultimate period. Indeed, if the claim is not true, then for any positive 

integer n  there exists a positive integer ,, nTT >  and a competitive equilibrium for he 

truncated economy with time horizon ,T  say 

( ) ( )
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such that .0>TX  Because ,0>TX  the oil investment of every young generation before 

the last period must be positive, which im  of oil must rise through time 

at a rate greater than or equal to the rate of cap

,
,),,,(,)

truncated economy, all of the rem l resources at the beginning of period T must 

be extracted for use in the consumption good sector, and this will constrain the price of 

oil in period T not to exceed the rental rate of capital in that period, i.e.

=

ρωϕφ

plies that the price

ital investment, i.e., 

   ,1/ 11 ++ +−≥ ttt ρδφφ                 ).1,...,0( −= Tt       

In particular, we have .1/ 1 TTT ρδφφ +−≥−

.TT ρφ ≤

,1)

 Using 

this last result in the preceding inequality, we obtain  1(/ 11 δφφφ −≥− −− TTT  which 

maconstrains the price of oil in the penulti te period to be bounded above by 1, i.e., 

.11 <−Tφ  However, we know that the price of oil must rise through time from the initial 

level  00000 >+≥+= 0)('(' κξκφ fqf  at or above the rate of return to capital 

investment. Furthermore, according to Lemma 4, we mu .,...,0 T

Hence, using the hypothesis ,< ρδ we obtain ,111 >+−>+− ρδρδ t  for .,...,0 Tt =  

 result implies that the price of oil in period 1

st have  for ,−> ρρt t =  

− −

This last −T  will be arbitrarily large when 

T  is large, which contradicts the hypothesis of the reductio ad absurdum argument. The 

   We are now ready to prove Proposition 4. To this end, note  

truncated economies used in of of Prop  

claim is now established. 

that in the sequence of

the pro osition 4, oil resources are depleted by

 Because oil exhaustion always occurs in a 

aining oi

, 



period T  in all the truncated economies with time horizon greater than or equal to .T  

ence in the economy that is the limit of a subsequence of the sequence of truncated 

economies oil exhaustion  .T  This proves part (i) of Proposition 4, 

To prove (ii) of Proposition 4, note that if the oil stock is exhausted asymptotically, then 

the price of oil must rises indefinitely through time at or above the rate of return to capital 

investm nt. The price of oil thus will tend to infinity when t tends to infinity. Howeve , 

we have already argued in the proof of the claim that the price of oil in the period 

preceding a period in which oil is extracted for use in the production of the consumption 

good is bounded above by 1. Thus, part (ii) of Proposition 4

e r

 is established.            ■   

                                          

6. INCOMPLETE OIL EXHAUSTION UNDER COMPETITIVE EQUILIBRIUM  

   In the preceding section, we show that when the rate of capital depreciation is not too 

high, there exists a competitive equilibrium under which oil exhaustion occurs in finite 

time. The following question immediately arises. Are there equilibria under which part of 

H

also occurs by period

  

unexploited. The answer to this question is negative is maybe, 

as 

the oil stock is left in situ 

illustrated by the numerical example given in Sub-section 6.2 below. 

 

6.1. Steady States under Incomplete Oil Exhaustion 

 Consider a competitive equilibrium under which the oil stock is partially depleted, and 

that T  is the last period the oil stock is exploited. Then we have TT XQ <<0  and 

. ,0 TtQt >= Because all the young generations of period T and after put their saving

11 ++ ttt

expresses under the following form: 

./ 00 −−−= khbcN ω  

Forwarding (14) by one period, then

s in 

oth oil and capital, we must have 

(13) =

b

,+− ρδ        1/ ).( Tt ≥  φφ            

Furthermore, the current budget constraint for a young individual of period  can be 

(14) 1+tttttTt Xφ

 dividing the result by (14), we obtain 

Tt ≥

(15) . 
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Note tbthat in (15) we have let k /tt ,, Ttt ≥  

. , Ttt ≥κ

exists, then in the limit, the second equality in (15) becomes 

(17) ,1/]1[ =+− bρδ  

where we have let ρρ +∞→= lim  and .lim bb =  

=κ  denote the capital/labor ratio in period 

and have used (14) to obtain the first equality. Also, note that the second equality in (15) 

e equation in the capital/labor ratio is a second-order nonlinear differenc  If  

(16) ttk κ+∞→= lim

   If t l d

  

the p  at a

tt

Furthermore, a you of any

tt +∞→

he rate of capita epreciation is not too high, then δρ >

her parent, with the fraction being the inverse of the num of children raised by the 

parent: the same oil y each of the successive young generations, and due 

to population growth each young individual in later periods owns a smaller and smaller 

part of the economy’s oil stock. 

   When is incomplete oil exhaustion a likely outcome under competitive equilibrium? To 

answer this question, let us look at the following more detailed representation of the 

division of output among the various uses in a steady state under incomplete oil 

exhaustion: 

 according to Lemma 4, 

and we must have ,11 >+−= ρδb  which means that in steady state the population and 

rice of oil all grow  rate equal to the rate of return to capital investment. 

ng individual  period owns only a fraction of the oil owned by 

ber 

 stock is owned b

(18) .)(')()( 0 κκκκ bbhcfkfbs −−−−=−  

In (18), we have let s  represent the saving of a young individual. The left side of (18) 

thus represents the funds allocated to oil investment. The right side of (18) represents 

what remain

facto

current consumption; the costs of raising children, and the cost of capital investment 

required to sustain the steady state of the economy. If the earning of capital relative to 

output is high, there will be little left for wages. Furthermore, out of the low wages, the 

young individual must pay for her current consumption, the cost of raising children, and 

capital investment. Because the birthrate is higher than 1, the cost of raising children will 

κ  

s of the output of the consumption good produced per worker after (i) the 

r capital has received its remuneration and (ii) the young individual has paid for her 

be substantial if the cost of raising a child is high. There might not exist any value of 



such that the right side of (18) is positive, a necessary condition for incomplete oil 

exhaustion. When such a value exists, one can always construct a competitive 

equilibrium under which the oil stock is only partially exploited. Proposition 5 stated 

below gives a condition for the oil stock to be partially exploited. In this proposition, 

)(')( κκρ f=  and )(')()( κκκκω ff −=  denote, respectively, the rental rate of capit l 

and the wage rate that prevail when only renewable energy is used in the production of 

the consumption good and when 

a

κ is the capital labor ratio. Also, recall that 

),( 1
0

+tt rc ω and ),( 1+tt rb ω  denote, respectively, the current consumption of a young 

individual of period t and the number of children she raises, given that tω is the prevailing 

1+t

 

N 5: 

wage rate in period t and r is the rate of return to her saving. 

quality 

(19) 

PROPOSITIO If the ine

)( )) 0(1),()(1),(()( 0 >+−+−−−− κκρδκωκδκωκκρκ bhcf  

is satisfied for some  value of  then there exist infinitely many steady states in 

which part of the oil stock is left in situ unexploited. Furthermore, the capital/labor ratio 

nd the birthrate are lower in a steady state with incomplete oil exhaustion than in the 

austion.  

OF: Let 

) + ρ

),(min

( ) (

   PRO

δκ e>

(20)  1
00000000

0
0 κκρδκωκρδκωκρκκ

φ
ξ +−+−+−−−= bhcf  

where we have let ).( 00

0

κρφ =  Here we shall interpret 0κ  as the initial capital labor ratio 

and ξ  – defined by (20) – as the in

a

steady state with complete oil exh

0κ  be a value of κ

( )

that satisfies (19) and 

( ) ( )( )[ ],)(1),()(1),()()(

rental ra  

0 oil endowm

)(1),( 000 κρδκω +−= bb , and suppose that in period ,...,1,0, =tt

,00
t

t bφφ =  ),( 0κρρ =t

).( 0κωω =t  It is st ard to verify that when the price system ( )= 0,, tttt ωρφP  

prevails, a young individual of each period ,...,1,0=t  will have the same labor income, 

t and old-age consumption, will raise the same number of 

children, will invest in the same quantity of capital per child, and will spend the sam  

will have the same curren

e

amount of real resources to buy oil. The price system thus constructed and the lifetime 

itial ent per worker. Next, let 

the price of oil, the 

te of capital, and the wage rate are given, respectively, by 

raightforw ∞
=



plans induc . Under this

ever ex

ed by this price system thus constitute a competitive equilibrium  

competitive equilibrium, the oil stock is n ploited; the capital/labor ratio is 

constant; the birthrate is constant; the rate of return to capital is equal to the birthrate; and 

the price of oil rises through time geometrically at a rate equal to the birthrate. The 

competitive equilibrium thus constructed is thus a steady state for an economy with 

exhaustible resources.  

   Now note that if there exists a value of κ  that satisfies (19), then by continuity all the 

capital/labor ratios in a small neighborhood of κ also satisfy (19), which implies that if 

there exists one steady state, then there exist infinitely many steady states. Finally, note 

that when κ  is high, the left side of (19) will be negative due to the Inada condition 

.0)('lim =+∞→ κκ f  Let κ  be the smallest value of κ  such that the left side of (19) is less 

than or equal to 0. Then any value of κ  that satisfies (19) will be strictly less than κ ; that 

is, the capital labor ratio in a steady state with in omplete oil exhaustion is less than that 

in the steady state with complete oil exhaustion. The lower capital labor ratio in a steady 

state with in omplete oil exhaustion means a lower wage rate and a higher rate of return 

lts imply – according to Assumption 2 – a lower birthrate in a 

steady state with incomplete oil exhaustion than in the steady state with complete oil 

exhaustion.                         ■    

    

   Incomplete oil exhaustion is likely to exist if wages account for a proportion that is 

much higher than capital remuneration and if the cost of raising a child is low. If oil 

resources are abundant, the oil input per worker will be high according to Lemma 3. Thus 

the amount of oil left in the case of incomplete oil exhaustion will be 

c

c

to saving. These last resu

 situ unexploited in 

mall so that in equilibrium successive young generations can afford to pay for 

unexploited serves a basic function of money: a store of value. In contrast with paper 

relatively s

the investment in this asset out of their wages. A competitive equilibrium with 

incomplete oil exhaustion is obviously not Pareto efficient. Although oil has an intrinsic 

value as an input in the production of the consumption good, the part of the oil stock left 

unexploited serves no production purposes. Its only use is a store of value, a means 

through which successive young generations transfer their incomes made during their 

working days to days of retirement. In this manner, the part of the oil stock left 



money, which has no intrinsic value and might have a zero price in equilibrium,4 oil left 

under the ground unexploited always has a positive value, which, according to our 

version of Hotelling rule in general equilibrium setting, must appreciate at the rate of 

interest, namely the real value of the solar energy harnessed from the marginal unit of 

capital. This surprising feature – an oil bubble so to speak – is first encountered here.  

 

6.2. Numerical Example 
 
   Suppose that preferences are represented by the following lifetime utility function: 

),(10 bvLogcLogc ++ γ  with ,ˆ0 ),1()( bbbLogbv ≤≤+= β  where β  is a positive 

parameter and b̂  is a constant greater than 1 but less than the saturation number of 

i unctio ithmic and the 

sub-utilit n of offsprin the relevant range  The 

saving, and the optima plan for a young individual o s

offspring .maxb  As specif ed, the single-period sub-utility f n is logar

y functio ].ˆ,0[ b

number of offspring, and saving depend only on labor income, not on the rate of return to 

l lifetime f period t i  given by 
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As for the output of the consumption good produced by a worker, we assume that it is 

given by .10  ,)( <<= ααeef  The following values for the parameters are med: 

,77.0  ,73.0  ,10.0 ===

+ hhhh

 assu

γβα  ,13.0=h  and .15.0=δ  Also, the initial oil endowment 

per worker and the initial capital/labor ratio are assumed to be given by 01.2=ξ

g is also logarithmic in 

et

)()1()( ωγγβω ++−
β
ω ωγ

1

,00 =κ  respectively. For this numerical ex e, we are able to find two comp itive 

   Table II presents the equilibrium under which the oil stock is depleted in finite time. 

Under this equilibrium, the oil stock is com

during 

                                                

ampl

equilibria, one under which the oil stock is exhausted in finite time, and one under which 

the oil stock is only partially depleted. 

pletely exhausted at the end of period 5. After 

that the economy is completely sustained by the backstop. The two technologies co-exist 

four periods, and the economy enters a steady state – without any oil left – in 

 and 0

 
4 See McCandless and Wallace (1991, Chapter 10). 



period 6. The steady state capital labor ratio is 0.263, and the steady state birthrate is 

1.068.   

TABLE II 

COMPETITIVE EQUILIBRIUM WITH COMPLETE OIL EXHAUSTION 

,77.0 ,73.0 ,10.0( === γβα ,13.0=h ,15.0=δ ,011.20 =ξ )00 =κ  
 

Period tξ  tκ  tq  tφ  tρ  tω  tb  

0 2.011 0 0.480 0.194 0.194 0.836 1.179 

1 1.418 0 0.4 4 0.204 0.831 1.168 53 0.20

2 0.826 0.084 0.337 0.218 0.218 0.825 1.155 

3 0.424 0.161 0.222 0.237 0.237 0.818 1.138 

4 0.177 0.214 0.127 0.264 0.264 0.808 1.116 

5 0.04  0.246 0.044 0.305 0.305 0.795 1.087 4

6 0 0.261 0 0.335 0.335 0.787 1.068 

7 0 0.263 0 0.332 0.332 0.788 1.068 

8 0 0.263 0 0.332 0.332 0.788 1.068 

… … … … … … … … 

t 0 0.263 0 0.332 0.332 0.788 1.068 

equ um  find is ese in Tabl II.  

TA  III 

,7 ,0 === γβα ,h ,δ 011.20 =ξ 0=

 

   The second ilibri  we  pr nted e I

BLE

COMPETITIVE EQUILIBRIUM WITH INCOMPLETE OIL EXHAUSTION 

.073.0 ,10.( 7 13.0= 15.0= , )0κ  
 

Period tξ  tκ  tq  tφ  tρ  tω  tb  

0 2.011 0 0. 4 0.194 0.836 1.179 

2 1.253 0 0.421 0.218 0.218 0.825 1.155 

480 0.19

1 1.898 0 0.453 0.204 0.204 0.831 1.168 



3 0.72  0.097 0.287 0.237 0.237 0.818 1.138 

0.165

0.209

0.232

1

4 0.381 0.175 0.264 0.264 0.808 1.116 

5 0.185 0.081 0.305 0.305 0.795 1.087 

6 0.095 0 0.372 0.372 0.778 1.047 

… … … … … … … … 

t 
6

6

095.0
−t  

b

      

   As can be s  fro e r th irst th iod h ements of 

the economy are me l resources. Capital begins to be 

accumulated at the end of the third period, and energy produced by the backstop 

technology provides part of the energy inputs in the fourth period. The two technologies 

– fossil fuels and the backstop – are both exploited during three periods, with the 

backstop gradually repla  is not exploited 

0.232 0 6
6372. −tb0 0.372 0.778 1.047 

een m Tabl  III, fo e f ree per s, all t e energy requir

t by drawing down the oi

cing oil. From period 6 on, the oil stock

anymore. The amount of oil that remains at the beginning of period 6 is left in situ, 

unexploited, and all the energy requirements of the economy are met by the backstop 

technology. The economy enters a steady state at the beginning of period 6. In steady, the 

capital labor ratio is 0.232, and the population as well as the aggregate capital stock 

grows geometrically at the rate of 1.047, which is also the rate of return to capital 

investment.   Note that the rate of capital depreciation has been deliberately chosen to be 

low, ,15.0=δ so that an equilibrium under which the oil stock is depleted in finite time 

exists, as asserted by Proposition 4. Also, note that the capital share in national income 

( 1.0=α 0) and the cost of raising a child ( )13.0=h  are chosen sufficiently low to ensure 

that an equilibrium with incomplete oil exhaustion exists, as asserted by Proposition 5. 

Finally, observe that under both equilibria, the convergence to steady state is monotone, 

due to logarithmic preferences, and that in steady state, the capital labor ratio as well as 

the birthrate are both lower under the equilibrium with incomplete exhaustion.  

 



7. CHARACTERIZATION OF TITIVE EQUILIBRIUM 

   To concentrate on the influence of exhaustible resources on fertility decisions and on 

the process of technology substitution, we shall consider the case in which fossil fuels are 

abundant, but backstop capital is not. Also, we shall assume that the population is either 

stable or growing in the long run. 

 COMPE

 When fossil fuels are abundant at the beginning, a competitive equilibrium consists of 

three phases. In the first phase, the energy inputs used in the production of the 

ses the introduction of the backstop and the end of 

  

consumption good come solely from oil. Because the population is stable or growing in 

the long run, oil alone cannot sustain the economy indefinitely, and the backstop must be 

brought into use at some time to provide part of the energy requirements of the economy. 

The time interval that encompas

extraction activities constitutes the second phase of a competitive equilibrium: the phase 

of technology substitution. The third phase of a competitive equilibrium begins after all 

extraction activities have been terminated, either due to oil exhaustion or because the 

competitive equilibrium in question involves incomplete oil depletion. 

   According to Lemma 3, the oil input per worker in period 0 will be high, which means 

a high wage rate in this period. The high labor income will induce a young individual of 

period 0 to raise a number of children close to the saturation level .maxb  The division of 

the output of the consumption good produced by a worker between the two factors of 

production is represented by the identity .)( 0000 qqf φω +=  Furthermore, using 

o
Assumption 4 and the fact that ,0 bb >  we can assert that .0000 qb φω <  Also, according to 

Lemma 3, a young individual of period 0 will invest all her saving in oil, and we have  

(21) .]/[]/[/][ 000000000001 ξφωφξξ <<<=−= qbbsbq  

The chain of inequalities in (21) indicate that the oil endowment per worker in period 1 is 

strictly less than the oil input per worker in per  turn less than the oil 

(22) ,)(')(' φξφ =>≥= ffqf  

i.e., the price of oil in period 1 will be higher than the price of oil in period 0. If the o

iod 0, which is in

endowment per worker in period 0. Because ,11 ξ≤q  we must have 

00111 )(' q

il 

ment per worker in period 1 is still large, the preced g argument can be repeated endow in



to assert that the oil input per worker in period 1 – although lower than that in period 0 – 

is still high, and a version of (21) as well as a version of (22) also hold for period 2.  

   During the early phase of the competitive rium, the oil enequilib dowment per worker 

apidly. There are two reasons behind this fast decline. First, the price of oil must be 

e oil 

falls r

low to clear the oil market. More precisely, the low price of oil induces the firms 

producing the consumption good to use more of this input. The high oil input per worker 

also means a high wage rate, allowing the young generation to save more, which, coupled 

with a low oil price, make it possible for the young generation to buy the rest of th

stock as investment. Second, the initial high birthrates mean less oil is available for each 

worker in the following periods. One implication of the fast decline in the oil endowment 

per worker is a slow-down in the population growth. As the price of oil rises, the wage 

rate declines, and this in turn induces a fall in the birthrate. If the rate of return to oil 

investment rises through time, the substitution effect – according to Assumption 2 – will 

reinforce the income effect and cause the birthrate to fall even further. Thus we can 

expect the birthrate – which is high at the beginning – to decline steadily through time as 

the oil stock is being exploited. 

   In the second phase, technology substitution – backstop for fossil fuels – takes place. 

When both technologies are exploited in a period, say t, we must have 

(23) .11/ 1 tttt φδρδφφ +−=+−=−    

Observe that when (23) holds, we must have .11 <−tφ  Furthermore, according to Lemma 

4, if the rate of capital depreciation is not too high, then the right side of the second 

equality in (23) will be greater than 1, which implies that the price of oil as well as the 

eans a fall in the 

 rate. Furthermore, a rise in the return to saving will induce a young individual to 

ing to 

rate of return to oil and capital both rise during the phase of technology substitution. 

Again as our discussion of the first phase, the rise in energy prices m

wage

save more at the expense of children, accord Assumption 2. Thus, the birthrate 

continues to decline in the second phase.  

   How long does the second phase last? To answer this question, one must determine 

precisely the time 1−tφ  exceeds 1, which requires many more technical arguments that we 

have not carried out. Needless to say, the length of the technology substitution phase 



depends critically on the rate of capital depreciation. In the particular case of ,1=δ  (23) 

is reduced to ,/ 1 ttt φφφ =−  which leads to ;11 == −tt φφ  that is when capital depreciates 

completely at the end of each period, a ne  for the two techno  

d. When ca

references, as described in Section 3. Depending on the values of the 

tock is exhausted in finite time. The possibility of multiple equilibria arises 

cessary condition logies to

co-exist for a period is that the price of oil in that and in the previous period to be equal to 

1, a result that cannot possibly arise in equilibrium. Thus, when capital depreciates 

completely, technology substitution occurs abruptly, with the backstop being brought into 

use only after the fossil fuels have been exhausted. The second phase does not exist in 

this case. This t hard to understan pital depreciates completely, it is 

not different from oil – an exhaustible resource – from the perspective of an investor: 

both fetch the same price on the energy markets and both are used up at the end of the 

production process. 

   During the third phase of a competitive equilibrium all the energy needs of the 

economy are met by the backstop. There are two possible scenarios to consider: complete 

oil exhaustion and incomplete oil exhaustion.  

   If the oil resources have been completely depleted when the third phase begins, then the 

evolution of the economy from this time on is completely determined by the backstop 

technology and the p

result is no

parameters, the economy might converge to a steady state in a monotone manner, in 

damped oscillation, or it might converge to a stable cycle. The existence of an exhaustible 

resource has only a fleeting impact in the short run, especially at the beginning when the 

resource makes it possible for the population to grow rapidly and for capital to 

accumulate in a less painful manner. One can visualize through time the process of 

transforming oil into the consumption good and into backstop capital. In the long run oil 

does not influence the birthrate; its only impact is to allow for a population with a larger 

absolute size. 

   In the case the competitive equilibrium involves incomplete oil exhaustion, there are 

infinitely many possible steady states that arise from the infinitely many possible 

equilibria with incomplete oil exhaustion. Starting from a given steady state, one can go 

back in time to the initial state of the economy. As indicated by Proposition 4, when the 

rate of capital depreciation is low, there exists also a competitive equilibrium under 

which the oil s



from the indeterminate mix of solar energy and oil use that we have pointed out in 

solving the profit maximization problem represented by in Sub-section 2.2.4.  Starting 

from the same initial oil stock and the same initial capital stock, the economy might 

evolve along different equilibrium trajectories, reaching the point at which solar energy is 

substituted for oil at different times. Furthermore, at the time technology substitution 

takes place, the oil stock and the capital stock under complete oil exhaustion might 

assume values that are different from those under incomplete oil exhaustion (including 

the special case the oil stock is completely exhausted when the backstop is first brought 

into use). Which steady state the economy will converge to in the long run depends on 

the state of the system at the time the backstop completely replaces oil in the production 

of the consumption good. In each of these steady states, the capital labor ratio and the 

birthrate are both lower than those in the state with complete oil exhaustion.  

 

8. CONCLUSION 

 

   The major findings of the paper can be summarized as follows. When the economy 

begins with a positive stock of reproducible capital, but has no oil, there exist a unique 

competitive equilibrium and a steady state (see our Proposition 1 and 2). Depending on 

e specified functional form of the lifetime utility function, convergence to the steady 

state might be monotone or in dam hermore, by varying the values of 

some parameters of the model, we might obt in cycles instead of convergence in damped 

exploited through time. In an overlapping-generations model, this presumption turns out 

th

ped oscillation. Furt

a

oscillation. We would like to mention in passing that the problem raised by Galor and 

Ryder (1989) about the non-existence of a steady state is due to the assumption that the 

population grows at an exogenously given rate. The introduction of fertility decisions into 

the overlapping-generations model (as can be seen in the proof of Proposition 2) is 

sufficient to guarantee the existence of a steady state in our model.   

     The results of the model change dramatically when the economy is endowed with a 

stock of fossil fuels. In traditional models of resource extraction – à la Hotelling or in the 

tradition of optimal growth – the resource is always presumed to be completely depleted, 

and the equilibrium to be efficient; the only concern is to see how the resource is 



to be unfounded. When the time horizon is infinite and agents make plans only for the 

two periods of their life cycles, we cannot take for granted that the resource stock will be 

on is low, there exists a competitive equilibrium under 

of oil bought by a young individual of the previous period, with the fraction being equal 

completely depleted or that the equilibrium will be efficient.  In her lifetime plan, an 

agent does not consider the impact of her decision on the welfare of future generations 

and can always invest either in backstop capital or in oil, and then sells what she owns to 

the young generation or the competitive firms of the next period.  The fact that the 

resource is exhaustible has no bearing on her investment decision, and as long as the 

price of the resource rises through time at the market rate of interest, she is quite willing 

to hold this asset so that the resource stock might only be partially depleted. The part of 

the resource stock left in situ unexploited serves as a financial bubble, and in steady state 

the resource price – according our modified version of the Hotelling rule – will rise 

geometrically through time at a rate equal to the marginal product of capital, which is 

also the steady-state birthrate.  

     Incomplete depletion of the resource stock requires two conditions. First, the price of 

oil must be above the price of renewable energy to discourage its use by the competitive 

firms. Second, because the value of the stock left in situ must rise through time, the 

population must also be growing so that the oil investment made by a young individual of 

each period is only a fraction of the oil owned by a young individual in the preceding 

period, with the fraction being equal to the inverse of the birthrate. We demonstrate that 

if the rate of capital depreciati

which the stock of fossil fuels is completely depleted in finite time (see our Proposition 

4) We also provide conditions for which there exists a continuum of steady states in 

which the oil stock is only partially depleted (see our Proposition 5).  In our model, the 

indeterminacy of the steady state arises from the endogenous fertility decision of a young 

individual and from the indeterminate mix of oil and capital in her investment portfolio. 

     To see why the indeterminacy of the steady state cannot occur under the assumption 

that the population grows at an exogenously given rate, first note that according to 

Hotelling rule, the price of oil must grow geometrically at the rate of interest, which is the 

marginal product of capital, when oil exhaustion is not complete. Second, note that the 

amount of oil bought by a young individual in any period is only a fraction of the amount 



to the inverse of the exogenous birthrate. Third, in steady state the value of the oil 

investment of a young individual is constant, and given that the price of oil must rise 

-looking competitive equilibria  – one under which the oil stock is depleted in 

                                                

geometrically at the rate of interest, the amount of oil bought by a young individual of 

successive generations must decline geometrically at the same rate, which we have 

shown to be equal to the inverse of the birthrate. Therefore, the steady-state capital labor 

ratio is completely determined by the exogenous birthrate, and thus indeterminacy of the 

steady state cannot arise if the population grows at an exogenously given rate. 

     With endogenous fertility, on the other hand, when the economy is endowed with a 

stock of fossil fuels, there are two variables to choose from a single budget constraint in 

steady state: the capital labor ratio and the birth rate. Because the rates of return to oil and 

capital investments are the same, the investment mix of a young individual is 

indeterminate, and this means there is freedom in choosing either the level of capital 

investment or the value of the oil investment. Choosing one means implicitly choosing 

the other, and this is the reason why the set of possible steady states is a one-dimensional 

manifold.  

     In general, we can expect that convergence to different steady states involves starting 

from different initial conditions. The indeterminacy of the steady state thus provides a 

possible explanation for the variations in incomes and birthrates across countries along 

their paths of economic development by appealing to their different initial conditions 5. 

For an economy that converges to a steady state with incomplete depletion, there exists 

also a competitive equilibrium under which the oil stock is depleted in finite time if the 

rate of capital depreciation is low. That is, for the same initial condition, there might exist 

two forward

finite time, and one with incomplete depletion. In this case, cultural or non-economic 

factors can function as an equilibrium selection mechanism. In the long run, the economy 

that uses part of the oil stock as a store of value to transmit wealth from one generation to 

the next has a lower birthrate and a lower capital labor ratio than the economy that 
 

5 In the traditional Solow growth model, there exists a unique steady state, and convergence to the steady 
state is global. The model is thus unable to explain the variations in incomes across countries in the long 
run. A possible explanation for these variations was provided by Lucas (1993), who suggested that the 
variations in growth rates across countries are due to their different levels of human capital, and human 
capital is not mobile. Recently, multiple equilibria have emerged as a possible explanation for these 
variations. See, for example, Yip and Zhang (1997), who tried to generate indeterminacy in a simple 
endogenous growth model with endogenous fertility to explain these variations.  



exhausts its resource stock, presumably because investing in oil leaves fewer resources 

for raising children and for the capital investment needed to sustain a steady state.   

     The evolution of an economy endowed with a large stock of fossil fuels can be 

described as follows. For a given initial stock of capital, a large initial oil stock means a 

large oil endowment per worker in period 0, which leads to a high oil input  (see Lemma 

1.(i))per worker and a fortiori high wages in this period. The high wages induce a young 

individual of period 0 to increase her current consumption, to raise a more offspring, and 

to save more for her old-age consumption. Furthermore, all her savings will be put into 

oil (see Lemma 1.(ii)) because the abundance of fossil fuels discourages the accumulation 

of capital in the backstop sector. If the oil endowment per worker in period 1, which is 

nology substitution, the backstop completely takes over 

 represents another 

dimension of inefficiency in overlapping-generations models first encountered here.  

lower than that in period 0 because of high fertility in period 0,  is still high (see Lemma 

1.(iii)), then what happens in period 0 repeats itself in period 1. As long as this process 

unfolds, the price of oil will be rising; the oil endowment per worker will be declining; 

and the birthrate will be falling.  

     If the population is stable or rising in the long run, then oil alone cannot sustain the 

economy forever, and the backstop must be brought into use at some point in time. The 

phase that encompasses the period the backstop is first brought into use and the period 

extraction activities last take place is the transition phase during which the two 

technologies – fossil fuels and backstop – co-exist, with the backstop progressively 

displacing fossil fuels in satisfying the energy needs of the economy. During this phase, 

the price of oil continues to rise, while the birthrate continues to fall.  

     At the end of the phase of tech

the function of meeting the energy needs of the economy. If oil exhaustion takes place at 

the end of the transition phase, then in the long run, the capital labor ratio and the 

birthrate are the same as if the economy were never endowed with a stock of fossil fuels. 

If the oil stock is only partially depleted, then in steady state the price of oil must rise 

geometrically at the steady-state birthrate. In the terminology of Tirole (1985), oil in situ 

becomes a financial bubble despite its potential in contributing to real production. The oil 

stock left in situ serves one function of money – a store of value – and



   Our model can be extended to include human capital. In the extended model, the cost of 

raising children and the sub-utility function of offspring will depend on the number and 

quality of offspring. The effective labor supply in the next period can then be considered 

as a composite good that captures both the number of offspring and their quality. 

Furthermore, for a young individual, the number of offspring is an inferior good, while 

quality of a child is a superior good, so that the quantity-quality trade-off should favor 

quantity over quality at low labor income, but quality over quantity at high labor income. 

For such an extended model, the discovery of a large stock of an exhaustible resource 

leads to rise in the effective wage rate, which can set in motion the demographic 

re of importance. It is well 

affecting pattern o

ubble. Also, public intervention may alter the resource ownership over time: 

transition – according to Lucas’ the theory of economic development (see Lucas (1998)) 

– by making the quantity-quality trade-off easier. 

   Although it is not our aim, the model we formulate sheds some light on policies. The 

somehow obvious result is the following. In the numerical example of Sub-section 3.2, 

we show that a shock that induces a decline in the saturation number of offspring from 

9max =b  to ,8max =b  with the values of the other parameters remaining the same, will 

result in a steady-state birthrate of 0.96, and the population will becoming extinct in the 

long run. Our model thus suggests a possible remedy for this problem of population 

extinction: subsidize the raising of children, and act conversely, in face of population 

explosion. 

   This paper does not deal with normative issues which a

known that inefficiency of various kinds usually arise in overlapping-generations models. 

In addition to the eventual ‘’under-accumulation’’ of capital, we now face the possibility 

of oil bubble, an ‘’over-accumulation’’ of a resource asset. Besides the prescription of 

 the f capital accumulation through taxation imposed on bequests, gifts, 

etc. in order to restore economic efficiency, the obvious policy implication of our work is 

how to induce complete resource exhaustion by some public intervention which should, 

at some point in time, discourage wasteful resource hoarding under the form of in situ as 

a resource b

instead of ‘’grand fathering’’ the entire resource stock to the fist generation. An authority 

argues that it is a common property, henceforth distribute the right to use this stock to 

different future generations; see Gerlag and Keyser (2001), or Valente (2006) for 



analyses in the absence of  population consideration.  Besides efficiency, there is also the 

inter-generational fairness issue. Restricting to selfish agents with finite lifetime, market 

evaluation and, therefore, resource depletion are profitable to the current generation, and 

this is not necessarily compatible with the well-being of future generations; see, for 

instance, Mourmouras (1993). If some light could be shed with their simple OLG setting, 

the analytical task is rather involved with our model where population is endogenous. 

Because of the general equilibrium repercussion of any policy on the rest of the economy, 

this is rather cumbersome, and would lead us too far afield.   
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ADDENDUM 

PROOFS OF PROPOSITION 3 AND LEMMA 4 

 Existence of Competitive Equilibrium in an Overlapping Generations Model with 

Exhaustible Resources, Technology Transition, and Endogenous Fertility 

 
 

The presence of an exhaustible resource whose stock declines through time makes the 

problem non-stationary, and the existence of a competitive equilibrium becomes 

problematic. Furthermore, the equilibrium can no longer be computed recursively. This 

addendum provides a proof of Proposition 3, which asserts the existence of a competitive 

equilibrium for an economy endowed with a stock of fossil fuels, and a more detailed 

proof of Lemma 4. The addendum offers a contribution to the sparse literature on the 

existence of competitive equilibrium for overlapping-generations models due to Balasko 

and Shell (1980, 1981a, 1981b), Balasko, Cass, and Shell (1980), Wilson (1981), Galor 

and Ryder (1989).   

 

In their efforts to generalize the finite-economy model of Arrow and Debreu to the 

overlapping-generations model, Balasko and Shell, op cit., and Balako, Cass, and Shell, 

op cit., have qualified the latter as one with double infinities: an infinity of consumers 

and an infinity of commodities. The infinity of consumers involves the infinite number of 

successive generations, while the infinity of commodities involve the infinite number of 

dated commodities – one commodity for each time period. These researchers established 

the existence of a competitive equilibrium for a simple overlapping-generations model of 

an exchange economy by showing – with the help of the Tychonoff theorem – that the 

competitive equilibrium for the overlapping-generations model is the limit of a sequence 

of truncated economies. The overlapping-generations model we formulate has both 

capital and an exhaustible resource. It also has an endogenous population structure 

because fertility decisions are determined by the maximizing behavior of successive 

young generations. Compared to the models of these authors, ours is much more 

complex, and it is not possible to invoke their results to assert that it has a competitive 

equilibrium.   

  



Our existence proof proceeds in three stages. First, we show that when the economy is 

truncated at the end of a finite number of periods, the economy thus obtained has a 

competitive equilibrium. Next,  we deploy a series of technical arguments to establish 

some upper and lower bounds on the prices, the birthrate, and the energy endowment per 

young individual in each period that apply uniformly across truncated economies. In the 

third stage, we use these bounds to show that a sequence of competitive equilibria – one 

competitive equilibrium for each truncated economy – has a subsequence that converges 

in the product topology of a denumerable family of finite-dimensional Euclidean spaces, 

and the limit of the subsequence is a competitive equilibrium of the infinite time horizon 

economy. The technique we employ in establishing convergence is Cantor’s famous 

diagonal trick used in the proof of the following version of the Tychonoff theorem: “The 

product of a denumerable family of compact metrizable spaces is compact and 

metrizable.” The interested reader can consult Dieudonné (1976, (12.5.9)). 

 

We would like to point out the advantage of the existence proof technique based on the 

Tychonoff theorem over that based on the monotone mapping theorem (see, for example, 

Stokey, Lucas, and Prescott (1989) or Olson and Knapp, op cit.) that is often used to 

establish the existence of a competitive equilibrium for simple macroeconomic models 

with one state variable and formulated under the overlapping-generations framework. In 

the latter technique, it is necessary to establish first that the operator a fixed point of 

which constitutes a competitive equilibrium of the overlapping-generations model has 

some desired monotonicity property, and this is hard to show, especially when the model 

has several state variables, as is the case of our model. Furthermore, unlike the proof of 

Balasko and Shell, op cit., and Balasko, Cass, and Shell, op cit., our existence proof is 

accessible to readers with only a rudimentary knowledge of real analysis.  

 

Suppose that the economy begins at time 0 in state  with  

 Let  and  denote the initial oil endowment per young 

individual and the initial capital labor ratio, respectively. The initial energy endowments 

),,,,( 1
0

0
000 NNKX ,00 >X

.00 ≥K 0
000 / NX=ξ 0
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per young individual are thus equal to .00 κξ +  Also, recall the assumption that 

 which ensures that the population does not collapse in finite time. ),(min
00 δκξ e>+

 

A.1. THE EXISTENCE OF COMPETITIVE EQUILIBRIUM FOR A TRUNCATED ECONOMY 

 

Let T  be a non-negative integer. If we truncate our economy at the end of period ,T  then 

we obtain an economy with a finite time horizon that we call the truncated economy with 

time horizon  A price system for the truncated economy with time horizon .T T  is a finite 

sequence  An allocation induced by is a list of finite sequences .),,,( 0
T
ttttt

T
== ρωϕφ T
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with the following properties: When the price system  prevails, T

 (i) , 1
00000

1
0 /])1([ NKXc ρδφ +−+=

 (ii)  is the optimal lifetime plan for a young individual of  ),,,,( 11
1

1
0

+++ ttttt kxbcc

  period                  ,t ),1,...,0( −= Tt  

 (iii)  is an optimal production plan of the representative firm in  ),,,( tttt YLSQ

the consumption good sector in period        ,t ),,...,0( Tt =

(iv)  is an optimal production plan for the representative producer of 

solar energy in period          

),( ##
tt SK

,t ),,...,0( Tt =

 (v)          ),1,,,(),,,( 1
0

1
10

−−= tttttttt bkxNNNKX ),,...,1( Tt =

 (vi)  .0
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Observe that (vi) represents the consumption of a young individual of period  Because 

the problem ends at the end of period  a young individual of this period has no future 

to plan for, and thus will neither save nor raise children; she will consume all the wages 

she earns. The pair 

.T

,T

( )TT ,  is said to constitute a competitive equilibrium for the 

truncated economy with time horizon T if the following market-clearing conditions are 

satisfied:  

(vii) . and  ,0  ,1 TTttt QXTtXQX =<<=++  
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The following proposition asserts the existence of a competitive equilibrium for a 

truncated economy, and gives some of its properties. In this proposition, we have let 

 and  denote, respectively, the equilibrium capital labor ratio and 

the equilibrium oil input per worker – both in period  

0/ ttt NK=κ 0/ ttt NQq =

.t

 

PROPOSITION A.1: Consider an economy with a positive stock of oil, and possibly a 

positive stock of capital. For any integer  the truncated economy with time horizon 

T has a competitive equilibrium, say 

,0≥T
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Under such a competitive equilibrium, the birthrate in each period before the last period 

is positive, and the following relationship holds between the price of oil and the price of 

renewable energy: 

 (A.1.1)       }{ ( ) ),(',min0 max δρφρκρφ <≤=+=< tttttt qf          ),,...,0( Tt =

with equality holding for the second inequality in (A.1.1) if   .0>tq

 

The existence of a competitive equilibrium for a truncated economy, and the fact that all 

equilibrium prices are positive can be established by using the well-known proof 

technique developed by Debreu, Gale, and Nikaido.6 Because fertility choice is 

endogenous, the number of consumers – old and young individuals – in each period is 

also endogenous, which means that the Debreu-Gale-Nikaido proof technique must be 

slightly modified to take into account the endogenous market size in each period. To see 

why the birthrate is positive in each of the periods before the last period, note that a zero 
                                                 
6 See Nikaido (1970, Chapter 10). 



birthrate in any period Tt <  implies a zero labor supply in the following period, leading 

to a positive excess demand for labor in that period, and this cannot arise in equilibrium. 

As for (A.1.1), it asserts that the equilibrium price of energy in each period is given by 

the equilibrium price of renewable energy in that period, and is always less than or equal 

to the equilibrium price of oil. To see why, note that in any period, if the stock of capital 

is positive, then the supply of renewable energy is positive, and its price must adjust to 

clear the market. Hence .tt φρ ≤  On the other hand, if the stock of capital is 0, then only 

oil is used in the production of the consumption good, and this implies .tt φρ ≥ In this 

case, we can set tt φρ =  without changing the decisions taken by the representative firms 

in the oil and renewable energy markets as well as the lifetime plan chosen by a young 

individual of the preceding period. Also, the price of energy in each period before the last 

period must be lower than the critical level  otherwise, the birthrate in this 

period will be 0, and we have just argued that this cannot arise in equilibrium. 

);(max δρ

 
 

  A.2. UNIFORM BOUNDS ON TRUNCATED ECONOMIES 

      

The following lemma establishes lower and upper bounds in two arbitrary successive 

periods that apply uniformly to all truncated economies. 

 

LEMMA A.2: Consider an arbitrary truncated economy in which tξ  is the oil endowment 

per young individual, and tκ  is the capital labor ratio – both in period  Also, suppose 

that 

t

tξ  and tκ  are constrained to satisfy the following condition: 

(A.2.1)  ],[)( tttt ηηκξ ∈+ , 

where 
t

η  and tη  are two constants satisfying tt
e ηηδ <<)(min .  Next, let ),,( ttt ωρφ  be 

the price system and  be the birthrate – both in period t – under a competitive 

equilibrium of a truncated economy. Also, let 

tb

1+tξ  and  1+tκ  denote, respectively, the oil 

endowment per young individual and the capital labor ratio – both in period 1+t  – 

under this competitive equilibrium. We have the following results that hold uniformly for 



all truncated economies with an energy endowment per young individual in period t  that 

is constrained to satisfy (A.2.1) and all competitive equilibria of these economies. 

(max

   (i) tφ  is bounded below by 0)(' >= tt
f ηφ  and above by a number, say  tφ . 

   (ii) tρ  is bounded below by 0)(' >= tt
f ηρ  and above by a number, say ).  δρρ <t

   (iii) tω  is bounded below by a number )(min δωω >t  and above by 

 ).(')( tttt ff ηηηω −=  

   (iv)  is bounded below by a number tb 0>tb and above by a number maxbbt < . 

   (v) 11 ++ + tt κξ  is bounded below by a number )(min
1

δη e
t

>
+

 and above by a number, 

         say  1+tη . 

 

PROOF: (i) First, note that the equilibrium price of oil and the equilibrium price of 

renewable energy – both in period  – are bounded below by t )(' ttt
f ηρφ == , 

uniformly for all ],[)( tttt ηηκξ ∈+  and all equilibria of all truncated economies that 

satisfy the preceding constraint. Next, note that according to (A.1.1), if , 

then oil will not be used as part of the energy inputs used in the production of the 

consumption good, and the entire oil endowment of the economy will be bought by the 

young generation of period . Hence if the price of oil in period t  is too high in a 

truncated economy, the value of the oil stock will exceed the labor income of the young 

individuals of period  and this cannot happen in equilibrium. We shall let 

)(max δρφ ≥t

t

,t tφ  denote a 

uniform upper bound for the equilibrium price of oil in period  Property (i) of Lemma 

A.2 is now established. 

.t

 

(ii) Because we have exhibited a uniform lower bound for the price of renewable energy 

in period  to prove (ii), we now only need to show the existence of a uniform upper 

bound 

,t

)(max δρρ <t  for the price of renewable energy in period  To this end, suppose 

the contrary. Then for each positive integer  we can find a positive integer  and a 

competitive equilibrium of the truncated economy with time horizon  such that 

.t

,n )(nT

)(nT



(A.2.2)  , )())()(('/1)( maxmax δρκδρ <+<− nnqfn tt

where  and )(nqt )(ntκ  represent, respectively, the oil input and the renewable energy 

input per worker in period  under the competitive equilibrium in question. Furthermore, 

if 

t

)(ntξ  and )(ntκ  denote, respectively, the oil endowment per young individual and the 

capital labor ratio in period  under such an equilibrium, then the oil investment made by 

a young individual of period  is given by 

t

t

 )]()([)]()([)()( nnqnnnqn tttttt κκξξ +−+=− , 

and in the limit, we have 

(A.2.3)  .0)()]()([ min >−≥−∞→ δηξ enqnim
tttnl  

We shall now show that (A.2.3) cannot hold in equilibrium. To this end, let 

 ( ))(),(),(),(),( 11
1

1
0 nknxnbncnc ttttt +++  

be the lifetime plan chosen by a young individual of period  According to (A.2.2), 

when  is large, the equilibrium wage rate in period  will be in a small right 

neighborhood of , and this induces a very low birthrate in period ; that is, 

 when  Furthermore, because the equilibrium wage rate in period t  is 

bounded above by 

.t

n t

)(min δω t

0)( →nbt .∞→n

),(')( ttt ff ηηη −  the capital investment made by such an individual 

must also be bounded above by ).(')( ttt ff ηηη −  Hence the total energy input used by all 

the offspring of a young individual of period t  must be bounded above by 

 ).(')()()()( 111 tttttttt ffnknknx ηηηηξ −+<+<+ +++  

The total output of the consumption good produced by all the offspring of a young 

individual of period  is then bounded above by t )),(),(')(( nbffF ttttt ηηηη −+ which 

tends to 0 when  tends to infinity. Finally, because the representative firm in the 

consumption good sector pays for the oil input in period 

n

1+t  from part of its output, and 

the young generation of period 1+t  pays for its oil investment from its labor income, and 

labor income constitutes only a fraction of the output, the oil investment represented by 

the left side of the first inequality in (A.2.3) will yield a zero rate of return, and thus 

contributes nothing to the old-age consumption of a young individual of period  that is, ;t



in the limit it is not rational at all for a young individual of period t  to invest in oil, We 

have just established (ii) of Lemma A.2. 

)( nnbt <

 

(iii) Property (iii) of Lemma A.2. follows directly from property (ii). 

 

(iv): First note that if is close to the saturation level , then using the first-order 

condition that characterizes the optimal lifetime plan of a young individual of period t  

we can assert that her current consumption and a fortiori her labor income will be large, 

contradicting (iii) of the lemma. This show the existence of an upper bound 

tb maxb

maxbbt < . To 

show the existence of a positive lower bound for , suppose it is not true. Then for each 

positive integer  we can find a positive integer  and a competitive equilibrium of 

the truncated economy with time horizon  such that 

tb

,n )(nT

)(nT ,/1  where  

represents the equilibrium birthrate in period t  under the competitive equilibrium in 

question. Because  when 

)(nbt

0)( →nbt ,∞→n  the oil investment of a young individual of 

period  – as already shown in the proof of (ii) – will tend to 0 when  There are 

two possibilities to consider: 

t .∞→n

1<δ  and .1=δ   

 

If ,1<δ  then investing in capital will yield a rate of return of at least ,01 >− δ  and this 

means – due to the Inada condition on the sub-utility function of consumption that in the 

limit the capital investment of a young individual of period t  will be strictly positive. 

Furthermore, because the total output of the consumption good produced by all the 

offspring of a young individual of period t  will be equal to 0 in the limit, the capital 

income that such an individual obtains by renting her capital in her old age will be 0. 

Hence in the limit, the rate of return to capital investment obtained by a young individual 

of period t  will be .1)(1 δ−=+∞→ nrim tnl  However, for a young individual of period  at 

the rate of return to capital investment of 

,t

,1 δ−  the number of offspring she chooses to 

raise will rise above 0 when the wage rate rises above the critical level . Using 

(iii), we can then assert that in the limit the number of offspring raised by a young 

)(min δω



individual of period t  will be positive, contradicting the premise of the reductio ad 

absurdum, and (iv) is proved for the case capital does not depreciate completely. 

)δ

 

If ,1=δ  then investing in capital also yields a zero rate of return, and a young individual 

of period  will not save, and in the limit she will spend her entire labor income on 

current consumption and raising children. The last result together with the fact 

t

)(min δωωω >> tt  imply that in the limit the equilibrium birthrate in period t  will be 

strictly positive, contradicting the premise of the reductio ad absurdum argument. 

Property (iv) of Lemma A.2 is now established. 

 

(v) If 11 ++ + tt κξ  is not bounded below by a number ),(min
1

δη e
t

>
+

 then for each positive 

integer  we can find a positive integer  and a competitive equilibrium of the 

truncated economy with time horizon  such that 

,n )(nT

)(nT

(A.2.4)  ,   )())()(('/1( max
11

max δρκξρ <+<− ++ nnfn tt

where )(1 nt+ξ  represents the equilibrium oil endowment per young individual, and 

)(1 nt+κ  the equilibrium capital labor ratio – both in period 1+t .  According to (A.1.1), 

. Using this result in (A.2.4), we can write )())()((' max
11 δρκ <+ ++ nnqf tt

(A.2.5)  . )())()(('))()(('/1)( max
1111

max δρκκξδρ <+≤+<− ++++ nnqfnnfn tttt

It follows from (A.2.5) that  when )()( min
1 δωω ↓+ nt ∞→n , with the ensuing result that 

, which contradicts the fact that the birthrate in period t , according to (iv), 

is bounded below uniformly for all equilibria of all truncated economies. 

0)(1 =+ nimbtl

 

If 11 ++ + tt κξ  is not bounded above, then for each positive number  we can find a 

positive integer  and a competitive equilibrium for the truncated economy with time 

horizon  such that 

n

)(nT

)(nT ,)()( 11 nnn tt >+ ++ κξ  where )(1 nt+ξ  represents the equilibrium oil 

endowment per young individual, and )(1 nt+κ  the equilibrium capital labor ratio – both in 

period . Hence either 1+t )(1 nt+ξ  or )(1 nt+κ  must be large when  is large. If n )(1 nt+ξ  is 

large, then using the result already proven that the birthrate of a young individual of 



period  is bounded below uniformly for all equilibria of all truncated economies with 

time horizon  we can assert that the amount of oil bought by a young individual of 

period  namely 

t

),(nT

,t ),()( 1 nnb tt +ξ  will exceed tξ , the oil endowment per worker in period  

which is clearly not possible. On the other hand, if 

,t

)(1 nt+κ  is large when  is large, then 

because the wage rate in period  is bounded above uniformly for all equilibria of all 

truncated economies, the capital investment of a young individual of period t  will exceed 

her labor income when n  is large, and this is not possible. The second part of (v) is now 

established.                     ■ 

n

t

,...,2

 

A.3. EXISTENCE OF COMPETITIVE EQUILIBRIUM FOT THE INFINITE TIME HORIZON 

ECONOMY WITH FOSSIL FUELS 

 

For each integer  let ,1=T ( ),, TT  where  and T
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be a competitive equilibrium for the truncated economy with time horizon T.  We shall 

now show that the sequence (  has a subsequence that converges in the product 

topology of a denumerable family of Euclidean spaces, and that the limit of this 

subsequence is a competitive equilibrium for the infinite time horizon economy.  

)∞=1, T
TT

 

Applying Lemma A.2 to 0ξ  and 0κ , we can assert the existence of the following bounds 

for the price system in period 0 that apply uniformly for all the elements of the sequence 

: ( )∞=1, T
TT

(A.3.1)  000
0 φφφ ≤≤< T , 

(A.3.2)  )(0 max
000

δρρρρ <≤≤< T , 

(A.3.3)  000
min )( ωωωδω ≤≤< T . 

Furthermore, there exists a lower bound 00 >b  on the equilibrium birthrate in period 0, 

such that 



 (A.3.4) max
0000 bbbb T <≤≤<   

holds uniformly for all the elements of the sequence ( )∞=1, T
TT . Also, there exist 

bounds 
1

η  and 1η , such that  

(A.3.5)  1111
min )( ηκξηδ ≤+≤< TTe  

holds uniformly for all the elements of the sequence ( )∞=1, T
TT .  

  

The procedure used to obtain the bounds on the prices and the birthrate in period 0 as 

well as the bounds on the energy endowment per young individual of period 1 can be 

repeated ad infinitum to obtain a sequence ( )∞
=++ 011

,,,,,,,,,
ttttttttttt

bb ηηωωρρφφ , such 

that for  ,...,1,0=t
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(A.3.7)  )(max δρρρρ <≤≤ t
T
tt

, 

(A.3.8)  t
T
tt ωωωδω ≤≤<)(min . 

(A.3.9)  max0 bbbb t
T
tt <≤≤< ,  

and  

(A.3.10) 1111
min )( ++++

≤+≤< t
T
t

T
tt

e ηκξηδ  

hold uniformly for all the elements of the sequence ( )∞=1, T
TT , with .  1−< Tt

 

Now for each integer t , let  denote the set of integers greater than or equal to t . 

Invoking the Bolzano-Weierstrass theorem, we can assert the existence of an increasing 

map 

tZ

)(: 00 nn ττ →  of  into itself, such that the sequence  1Z
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has a limit, say ( 110000 ,,,,, )κξωρφ b . The process just described can be repeated ad 

infinitum to obtain a sequence of increasing maps ,... , , 210 τττ  with  
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such that for each we have ,...,1,0=t
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Let . Now for each ( ∞
== 0,, tttt ωρφ ) ,...,1,0=t the convergence of the price system, the 

convergence of the birthrate – all in period  – and the convergence in period  of the 

oil endowment per young individual as well as the capital labor ratio  imply the 

convergence of the lifetime plan of a young individual of period  that is, for each   
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exists. In particular, the convergence of the price of oil and the rental rate of capital imply 

the convergence of the consumption of an old individual in period 0; that is, 

  ( ) 1
0

))((...,1
0

01 ccim n
n

t =+∞→
τττl

exists. By continuity, (A.3.11) is the lifetime plan that maximizes the utility of a young 

individual of period t  under the price system  .

 

Using the convergence of the lifetime plans of the successive young generations, we can 

assert the convergence of the state of the economy in each period; that is, 
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n
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ττττττττττττl  

exists. 

 

The market-clearing conditions in each period imply that the production plan of the 

representative firm that produces the consumption good in each period and the production 

plan of the representative firm in the backstop sector all converge; that is  

(A.3.12) ( ) ( ) ( ) ( )( ) ( )tttt
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and  

(A.3.13) ( ) ( )( ) ( )##))((...,#))((...,# ,, 0101
tt

n
t

n
tn SKSKim tt =+∞→

ττττττl  

both exist. By continuity, (A.3.12) and (A.3.13) are profit-maximizing plans, 

respectively, of the representative firm producing the consumption good and the 

representative firm producing renewable energy in period  under the price system  t .
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We have just established the following proposition, which is Proposition 3 in the main 

body of the paper. 

 

PROPOSITION A.3: Consider an economy with a positive stock of oil and possibly a 

positive stock of backstop capital. The pair ( ),,  thus constructed, constitutes a 

competitive equilibrium of this economy. Under such a competitive equilibrium, the 

birthrate in each period is positive. Furthermore, the following relationship holds 

between the price of oil and the price of renewable energy: 

(A.3.14) }{ ( ) ),(',min0 max δρφρκρφ <≤=+=< tttttt qf         ,...),1,0( =t

with equality holding for the third inequality in (A.3.14) if   .0>tq

 

In (A.3.14), we have let   and  . Also, we note in passing that 

(A.3.14) holds for any competitive equilibrium, not just the one constructed in the proof 

of Proposition A.3. 
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A.4: PROOF OF LEMMA 4 

 

According to Lemma 3.(ii) in the main body of the paper, if the initial energy endowment 

per young individual is large, then the energy endowment per young individual in period 

1 will be lower, and this process will continue through time as long as the energy 

endowments per young individual in the subsequent periods are still large. While this 

happens, the price of energy will be rising. On the other hand, if the initial energy 

endowment per young individual is close to the critical level , then the birthrate in 

period 0 will be extremely low, resulting in a large energy endowment per young 

individual in period 1, and from period 1 on, the price of energy will begin its climb, as 

just described. Thus, we can expect the existence of a positive lower bound for the price 

of energy that applies eventually to truncated economies with long time horizons. The 

)(min δe



following lemma, which is Lemma 4 in the main body of the paper, confirms this 

intuition.  

 

LEMMA A.4: There exists a number  with the following property: If , then 

for any value 

0>−ρ −< ρδ

00 κξ +  of the initial energy endowment per young individual,  there exists 

a non-negative integer , such that in any truncated economy with time 

horizon of at least , the equilibrium price of energy satisfies the following 

condition: 

)( 00 κξ +−t

)( 00 κξ +−t

 ,            . −≥+== ρκρφρ )('},min{ ttttt qf ))(( 00 κξ +≥ −tt

 

We prove Lemma A.4 in a series of claims. 

 

CLAIM 1: For each value of ,10 , ≤≤ δδ  there exists a number 0>ε   such that the 

following result holds uniformly for all truncated economies: If the equilibrium energy 

endowment per young individual in period  is such that  then the 

equilibrium energy endowment per young individual in the next period satisfies the 

inequality  

t ),()(' max δρκξ <+ ttf

.)()(' max
11 εδρκξ −≤+ ++ ttf

 

PROOF: Indeed, if the claim is not true, then for each positive integer n, we can find a 

truncated economy with )(ntξ  as the equilibrium oil endowment per young individual 

and )(ntκ  as the equilibrium capital labor ratio – both in period , such that 

, but   

t

( ) )()()(' max δρκξ <+ nnf tt

(A.4.1)  ( ))()('/1)( 11
max nnfn tt ++ +<− κξδρ .  

Using (A.4.1), the fact )()()()( 1111 nnnnq tttt ++++ +≤+ κξκ , and (A.3.14), we can write 

(A.4.2)  ( ) ( ) )()()(')()('/1)( max
1111

max δρκκξδρ <+≤+<− ++++ nnqfnnfn tttt . 

 

Because the  sequence ( ) ,...,2,1,)()(' =+ nnnf tt κξ  is bounded, it has a convergent 

subsequence that, by abuse of notation, we still denote by ( ) ,...2,1,)()(' =+ nnnf tt κξ Let  



( )  If ρ  then ( ))()( nn tt κξ +  will be large when  is large, 

which, according to Lemma 3.(ii), leads to a large value of 

n

( ))()( 11 nn tt ++ + κξ . A large 

value of ( )()( 11 nn tt ++ + )κξ  in turn implies a small value of ( ))()(' 11 nnf tt ++ + κξ , 

contradicting (A.4.1). Thus, we must have .0>ρ  If  then when  is large, 

the equilibrium price of energy in period  will be in a small left neighborhood of 

, which induces a very low value of 

),(max δρρ = n

t

)(max δρ ( ))()(' 11 nnf tt ++ + κξ , again contradicting 

(A.4.1). Hence the premise of the reductio ad absurdum argument leads to the following 

result: . Now pick a large value of n , then apply Lemma A.2.(v) to )(0 max δρρ <<

)()( nn tt κξ +  to assert that )()( 11 nn tt ++ +κξ  is bounded below by a number greater than 

, no matter how large  is; that is, when  is large, )(min δe n n ))()((' 11 nnf tt ++ + κξ  remains 

outside a left neighborhood of , contradicting (A.4.2).                                     ■  )(max δρ

'ε

.)()(' nnimf tt κξρ += l ,0=

 

We shall let  denote the supremum of the set of )(δε + s  for which Claim 1 holds. Note 

that for all 0)( >+ δε .10 ≤≤ δ  

                     

CLAIM 2:  For each value of ,10 , ≤≤ δδ  there exists a number 0>ε   such that the 

following results hold uniformly for all truncated economies: 

   (i) If ,)(' εκξ <+ ttf  then   )(')(' 11 ++ +<+ tttt ff κξκξ . 

   (ii) If  then   )()()(' max δεδρκξε +−≤+≤ ttf , ).(' 11 ++ +≤ ttf κξε  

 

PROOF: Indeed, if the claim is not true, then for each positive integer n, we can find a 

truncated economy, with )(ntξ  as the oil endowment per young individual and )(ntκ  as 

the capital labor ratio – both in period – such that either (i) or (ii) of the claim does not 

hold for 

t

./1 n=ε   

 

Next, note that the condition ( ) nnnf tt /1)()(' <+κξ  implies that )()( nn tt κξ +  will be 

large when n is large, and thus according to Lemma 4.(ii), )()( 11 nn tt ++ + κξ  will be lower 

than ),()( nn tt κξ +  which in turn implies ( ) ( ).)()(')()(' 11 nnfnnf tttt ++ +<+ κξκξ  Hence 



if the true, then only (ii) of th ge, i.e., 

for large ,n we have ,/1))()((' 11 nnnf tt

 claim is not e claim will be violated when is lar n  

<+ ++ κξ  which in turn implies 

(A.4.3)  ∞=+ ++ ))()((im ξl

 

11 nn

 

tt κ . 

ecause
max =−≤+< + nnnf tt δεδρκξ  

e sequence 

B

 0 ( ) ,...,2,1),()()()('

th ( ) ,...,2,1,)()(' =+ nnnf tt κξ has a convergent subsequence that, by abuse of 

till denote bynotation, we s  ( ) ,...2,1,)()(' =+ nntnf t κξ  Let  ( ).)()(' nnimf tt κξρ += l  

We have )(0 max εδρρ +−≤≤  

must have

).(δ  Furthermore, because (ii) of the claim

  

 is violated, we

.0>ρ  Hence ∈ )],()(,0( max δεδρ +−  and )()( nn ttρ κξ +  will tend to 

).)(]'[ 1 δρκ f >= −  Now  )(nt(mine apply Lemma A.2 (v) to t )(nκξ can assert that 

)()( 11 nn tt ++ +κξ  is boun .4.3).          

 

e shall let  be the supremum of the set of 

ded above, and this contradicts (A               ■ 

+ , we 

W )(δε − s'ε  for which Claim 2 is true. Note 

or athat 0)( >− δε ll .10 ≤≤f δ   

 

CLAIM 3:  There exists a number such that  when 0)0( >+
+ε  )0()( +

++ > εδε δ is small 

ROOF: If the claim is not true, then for each positive integer there exists a rate of 

enough.   

 

P ,n

capital depreciation nn /1)( <δ , such that ./1))(( nn <+ δε  Let 1>θ  be a given number, 

and consider the s  )),((+ nnδθε  the definition of 

))(( nδε +  that there is a com  of a truncated economy such that 

)),(())( max nnt δρκ <+  but  

(max δ

equence ,...2,1=  It follows from

petitive equilibrium

tξ

 )()(' 11 nnnnf tt δθερκξ +
++ −>+ ,  

)((' nf

( ) ))(())(



where )(ntξ  and )(ntκ  denote, respectively, the oil endowment per young individual and 

the capital labor ratio – both in a particular period . The preceding inequality together 

with the fact that  

t

   ( ) ( ) ))(()()(')()(' max
1111 nnnqfnnf tttt δρκκξ <+≤+ ++++

allow us to write 

(A.4.4)  
( )

( ) )).(()()('                                           

)()('))(())((
max

11

11
max

nnnqf

nnfnn

tt

tt

δρκ

κξδθεδρ

<+≤

+<−

++

++
+

 

Hence when , we have ∞→n

(A.4.5)   ( ) ).0()()(' max
11 ρκξ =+ ++ nnimf ttl

 

Next, note that because the sequence  ,...,2,1)),()((' =+ nnnf tt κξ  is bounded, it has a 

convergent subsequence that we still denote by ,...2,1)),()((' =+ nnnf tt κξ  Let 

)).()((' nnimf tt κξρ += l  Because  

 , ))(())()(('))()((' max nnnqfnnf tttt δρκκξ <+≤+

we have .  )0(0 maxρρ ≤≤

 

If ,0=ρ  then ))()((' nnf tt κξ +  is small – and a fortiori ))()(( nn tt κξ +  is large – when n  

is large. Applying Lemma 3.(ii), we can then assert that ))()(( 11 nn tt ++ +κξ  is large, i.e., 

))()((' 11 nnf tt ++ + κξ  is small when  is large, contradicting (A.4.5). If  then 

when  is large, 

n ),0(maxρρ =

n ))()(( nn tt κξ +  is close to , which in turn implies a large 

savings offspring ratio generated by the maximizing behaviour of a young individual of 

period . A high savings offspring ratio in period  means a large energy endowment per 

worker 

))((min ne δ

t t

)()( 11 nn tt ++ +κξ  in period ,1+t  again contradicting (A.4..5). We have just shown 

that .  )0(0 maxρρ <<

 

Now note that  implies . The argument used to 

prove Lemma A.2.(v) can also be used here to show that there is a lower bound for 

)0(0 maxρρ << )(]'[)0( 1min ρκ −=< fe



)()( 11 nn tt ++ +κξ  that is greater than  and that applies uniformly for all large values 

of , again contradicting (A.4.5).                             ■

  

)0(mine

n

CLAIM 4:  There exists a number , such that  when 0>−ρ )(δερ −− < δ  is small enough. 

 

PROOF: If the claim is not true, then for each positive integer we can find a rate of 

capital depreciation 

,n

nn /1)( <δ , such that  Let ./1))(( nn <− δε 1>θ  be a given number, 

and consider the sequence  It follows from the definition of 

 that for each , there exists a truncated economy with 

,...2,1 )),(( =− nnδθε

))(( nδε − n )(0 nξ  as the initial oil 

endowment per young individual and )(0 nκ  as the initial capital labor ratio, such that 

(A.4.6)  , ))(())(())()(('))(( max
00 nnnnfn δεδρκξδθε +− −≤+≤

but 

(A.4.7)  .  ( ) ))()(('))(()()(' 0011 nnfnnnf κξδθεκξ +≤<+ −

It follows from the first inequality in (A.4.7) and the premise of the reductio ad absurdum 

argument  that nn /1))(( <− δε

(A.4.8)  ( ) 0)()(' 11 =+ nnimf κξl .  

 

Because the sequence  ,...,2,1)),()((' 00 =+ nnnf κξ  is bounded, it has a convergent 

subsequence that we still denote by ,...2,1)),()((' 00 =+ nnnf κξ  Let 

)).()((' 00 nnimf κξρ += l  We have 

(A.4.9)  . )0()0(0 max
+

+−≤≤ ερρ

Note that the second inequality in (A.4.9) has been obtained by using (i) the second 

inequality in (A.4.6) in the limit, (ii)  and Claim 3. If ),0()( maxmax
0 ρδρδ =→iml ,0=ρ  

then ))()((' 00 nnf κξ +  is small – and a fortiori ))()(( 00 nn κξ +  is large – when n  is 

large. Applying Lemma 3.(ii), we can then assert that when  is large, we will have n

)()()()( 0011 nnnn κξκξ +<+ , i.e., ))()(('))()((' 0011 nnfnnf κξκξ +>+ , and this last 



result contradicts (A.4.7). We have just shown that  under the premise of 

the reductio ad absurdum argument.  

)0(0 maxρρ <<

 

Let  and )(]'[ 1 ρκ −= f )(')( κκκω ff −= . We have . For a young individual 

whose labor income is 

)0(minωω >

ω  and who obtains 1 as the rate of return to her savings, the 

number of offspring she raises is strictly positive, according to Lemma A.2.(iv). Hence 

by continuity, when n  is large, the number of offspring raised by a young individual of 

period 0 under the competitive equilibrium associated with n will have a positive lower 

bound that applies uniformly to all . This result together with the fact that n κ  is finite 

imply that the energy endowment per young individual in period 1 is bounded above, 

contradicting (A.4.8). Hence the claim is true.                            ■

                         

We are now ready to prove Lemma A.4. Let δ , with , be the rate of capital 

depreciation for the truncated economies. If the initial energy endowment per young 

individual 

−< ρδ

00 κξ + belongs to the interval , then using the 

definition of  and , we can assert that  

)]()(),([ max δεδρδε +− −

)(δε − )(δε +

 ,               , )]()(),([)(' max δεδρδεκξ +− −∈+ ttf )0( ≥t

and we can set  If , then using the definition of 

, we can assert that 

.0)( 00 =+− κξt )())(' 00 δεκξ −<∈+f

)(δε − )(')(' 1100 κξκξ +<+ ff . Furthermore, if  

 ,  )]()(),([)(' max
11 δεδρδεκξ +− −∈+f

then we can set  Otherwise, we can continue the process to obtain a chain 

of inequalities 

.1)( 00 =+− κξt

 <+<+<+ )(')(')(' 221100 κξκξκξ fff ….  

If  for some finite t , then set  

Otherwise, we obtain a monotone increasing sequence  

)]()(),([)(' max δεδρδεκξ +− −∈+ ttf .)( 00 tt =+− κξ

,...1,0 ),(' =+ tf  having 

 as the limit. Because , we will have  in finite time, 

and we can set  for the first value of t  this occurs.               ■ 

)(δε − )(δερ −− < −>+ ρκξ )(' ttf

tt =+− )( 00 κξ

tt κξ
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