Existence of competitive equilibrium in an optimal growth model with heterogeneous agents and endogenous leisure*

Aditya Goenka ${ }^{1}$
National University of Singapore
Cuong Le Van ${ }^{2}$
CNRS, Exeter Business School, Paris School of Economics, and VCREME ${ }^{3}$
Manh-Hung Nguyen
Toulouse School of Economics (LERNA-INRA) and VCREME ${ }^{4}$

March 15, 2011

Abstract

*We would like to thank the anonymous referee for the helpful comments. 1 Department of Economics, National University of Singapore, AS2, Level 6, 1 Arts Link, Singapore 117570, Email: goenka@nus.edu.sg 2 Centre d'Economie de la Sorbonne, Maison des Scieces Economiques, 106-112 boulevard de l'H^opital, 75013 Paris, France. Email: levan@univ-paris1.fr 3 VanXuan Center of Research in Economics, Management, and Environment 4 TSE, 21 all_ee de Brienne, 31000 Toulouse, France. Email: mhnguyen@toulouse.inra.fr

[^0]
Existence of competitive equilibrium in an optimal growth model with heterogeneous agents and endogenous leisure *

Aditya Goenka ${ }^{\dagger}$
National University of Singapore
Cuong Le Van ${ }^{\ddagger}$
CNRS, Exeter Business School, Paris School of Economics, and VCREME ${ }^{\S}$
Manh-Hung Nguyen ${ }^{〔}$
Toulouse School of Economics (LERNA-INRA) and VCREME

March 15, 2011

Abstract

This paper proves the existence of competitive equilibrium in a single-sector dynamic economy with heterogeneous agents and elastic labor supply. The method of proof relies on some recent results concerning the existence of Lagrange multipliers in infinite dimensional spaces and their representation as a summable sequence and a direct application of the Brouwer fixed point theorem.

Keywords: Optimal growth model, Lagrange multipliers, Competitive equilibrium, Elastic labor supply.
JEL Classification: C61, D51, E13, O41

[^1]
1 Introduction

Since the seminal work of Ramsey (1928), optimal growth models have played a central role in modern macroeconomics. Classical growth theory relies on the assumption that labor is supplied in fixed amounts, although the original paper of Ramsey did include the disutility of labor as an argument in consumers' utility functions. Subsequent research in applied macroeconomics (theories of business cycles fluctuations) has reassessed the role of the labor-leisure choice in the process of growth. Nowadays, intertemporal models with elastic labor continue to be the standard setting used to model many issues in applied macroeconomics.

Our purpose is to prove existence of competitive equilibrium for the basic neoclassical model with elastic labor with less stringent assumptions than in the literature using some recent results (see Le Van and Saglam (2004)) concerning the existence of Lagrange multipliers in infinite dimensional spaces and their representation as a summable sequence.

Lagrange multiplier techniques have facilitated considerably the analysis of constrained optimization problems. The application of these techniques in the analysis of intertemporal models inherits most of the tractability found in a finite setting. However, the passage to an infinite dimensional setting raises additional questions. These questions concern both the extension of the Lagrangean in an infinite dimensional setting as well as the representation of the Lagrange multipliers as a summable sequence.

Previous work addressing existence of competitive equilibrium in intertemporal models attacks the problem of existence from an abstract point of view. Following the early work of Peleg and Yaari (1970), this approach is based on separation arguments applied to arbitrary vector spaces (see Bewley (1972), Bewley (1982), Aliprantis, et al. (1990), Dana and Le Van (1991)). The advantage of this approach is that it yields general results capable of application in a wide variety of models. However, it requires a high level of abstraction and some strong assumptions.

Le Van and Vailakis (2004) in order to prove the existence of competitive equilibrium in a model with a representative agent and elastic labor supply impose relatively strong assumptions. ${ }^{1}$ In this paper, the existence of equilibrium cannot be established by using marginal utilities since we may have boundary solutions.

Recently, Le Van, et al. (2007) extended the canonical representative agent Ramsey model to include heterogeneous agents and elastic labor supply and supermodularity is used to establish the convergence of optimal paths. The novelty in their work is that relatively impatient consumers have their consumption and leisure converging to zero and any Pareto optimal capital path converges to a limit point as time tends towards infinity. However, if the limit

[^2]points of the Pareto optimal capital paths are not bounded away from zero, then their convergence results do not ensure existence of equilibrium.

To obtain the convergence results, they impose strong assumptions which are not used in our paper. ${ }^{2}$ Following the Negishi approach (1960), our strategy for tackling the question of existence relies on exploiting the link between Pareto-optima and competitive equilibria. We show that there exist Lagrange multipliers which can be used as a price system such that together with the Pareto-optimal solution they constitute an equilibrium with transfers. These transfers depend on the individual weights involved in the social welfare function. An equilibrium exists provided that there is a set of welfare weights such that the corresponding transfers equal zero. We prove existence of equilibrium without assuming, as in Bewley (1972), that any consumer i has at each t an endowment $\omega_{t}^{i} \geq 0$ which satisfies $\sum_{i=1}^{m} \omega_{t}^{i} \in \operatorname{int} \ell_{+}^{\infty}$. The model in which we establish existence is with complete contingent commodity Arrow-Debreu markets (as opposed to trading in sequential markets) and the prices and transfers are sufficient for decentralizing the optimal allocation. We also do not require, with additional assumptions, as in Le Van, et al. (2007) that the optimal capital stock converges in the long run to a strictly positive value in order to get prices in ℓ_{+}^{1}.

The organization of the paper is as follows. In section 2, we present the model and provide sufficient conditions on the objective function and the constraint functions so that Lagrange multipliers can be presented by an ℓ_{+}^{1} sequence. We characterize some dynamic properties of the Pareto optimal paths of capital and of consumption-leisure. In particular, we prove that the optimal consumption and leisure paths of the more impatient agents will converge to zero in the long run (see Becker (1980) for a similar result in a sequential trading model) with a very elementary proof compared to the one in Le Van, et al. (2007) which uses supermodularity for lattice programming. In section 3, we prove the existence of competitive equilibrium by using the Negishi approach and the Brouwer fixed point theorem.

2 The model

We consider an intertemporal model with $m \geq 1$ consumers and one firm. There is a single produced good in each period that is either consumed or invested as capital. The preferences of each consumer take the additive form: $\sum_{t=0}^{\infty} \beta_{i}^{t} u^{i}\left(c_{t}^{i}, l_{t}^{i}\right)$ where $\beta_{i} \in(0,1)$ is the discount factor $(i=1, \ldots, m)$. At date t, consumer i consumes c_{t}^{i} of the good, enjoys a quantity of leisure l_{t}^{i} and supplies a quantity of labor L_{t}^{i} which are normalized so that $l_{t}^{i}+L_{t}^{i}=1$. Production possibilities are given by the gross production function F and a physical

[^3]depreciation $\delta \in(0,1)$. Denote $F\left(k_{t}, \sum_{i=1}^{m} L_{t}^{i}\right)+(1-\delta) k_{t}=f\left(k_{t}, \sum_{i=1}^{m} L_{t}^{i}\right)$.
We next specify a set of restrictions on preferences and the production technology. ${ }^{3}$ The assumptions on the period utility function $u^{i}: \mathbb{R}_{+} \times[0,1] \rightarrow \mathbb{R}_{+}$ are as follows:

U1: u^{i} is continuous, concave, increasing on $\mathbb{R}_{+} \times[0,1]$ and strictly increasing, strictly concave on $\mathbb{R}_{++} \times(0,1)$.
U2: $u^{i}(0,0)=0$.
U3: u^{i} is twice continuously differentiable on $\mathbb{R}_{++} \times(0,1)$ with partial derivatives satisfying the Inada conditions: $\lim _{c \rightarrow 0} u_{c}^{i}(c, l)=+\infty, \forall l \in(0,1]$ and $\lim _{l \rightarrow 0} u_{l}^{i}(c, l)=+\infty, \forall c>0$.

We extend the utility functions on \mathbb{R}^{2} by imposing $u^{i}(c, l)=-\infty$ if $(c, l) \in$ $\mathbb{R}^{2} \backslash\left\{\mathbb{R}_{+} \times[0,1]\right\}$.

The assumptions on the production function $F: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$are as follows:
F1: F is continuous, concave, increasing on \mathbb{R}_{+}^{2} and strictly increasing, strictly concave on \mathbb{R}_{++}^{2}.
F2: $F(0,0)=0$.
F3: F is twice continuously differentiable on \mathbb{R}_{++}^{2} with partial derivatives satisfying the Inada conditions: $\lim _{k \rightarrow 0} F_{k}(k, L)=+\infty, \forall L>0, \lim _{k \rightarrow+\infty} F_{k}(k, m)<$ δ and $\lim _{L \rightarrow 0} F_{L}(k, L)=+\infty, \forall k>0$.

We extend the function F over \mathbb{R}^{2} by imposing $F(k, L)=-\infty$ if $(k, L) \notin \mathbb{R}_{+}^{2}$.
For any initial condition $k_{0} \geq 0$, when a sequence $\mathbf{k}=\left(k_{0}, k_{1}, k_{2}, \ldots, k_{t}, \ldots\right)$ is such that $0 \leq k_{t+1} \leq f\left(k_{t}, m\right)$ for all t, we say it is feasible from k_{0} and we denote the class of feasible capital paths by $\Pi\left(k_{0}\right)$. Let $\left(\mathbf{c}^{1}, \mathbf{c}^{2}, \ldots, \mathbf{c}^{i}, \ldots, \mathbf{c}^{m}\right)$ where $\mathbf{c}^{i}=\left(c_{0}^{i}, c_{1}^{i}, \ldots, c_{t}^{i}, \ldots\right)$ denotes the vector of consumption and $\left(\mathbf{l}^{1}, \mathbf{l}^{2}, \ldots, \mathbf{l}^{i}, \ldots, \mathbf{l}^{m}\right)$ where $\mathbf{l}^{i}=\left(l_{0}^{i}, l_{1}^{i}, \ldots, l_{t}^{i}, \ldots\right)$ the vector of leisure of all agents. A pair of consumption-leisure sequences $\left(\mathbf{c}^{i}, \mathbf{l}^{i}\right)=\left(c_{t}^{i}, l_{t}^{i}\right)_{t=0}^{\infty}$ is feasible from $k_{0} \geq 0$ if there exists a sequence $\mathbf{k} \in \Pi\left(k_{0}\right)$ that satisfies $\forall t$,

$$
\sum_{i=1}^{m} c_{t}^{i}+k_{t+1} \leq f\left(k_{t}, \sum_{i=1}^{m}\left(1-l_{t}^{i}\right)\right) \quad \text { and } 0 \leq l_{t}^{i} \leq 1
$$

The set of feasible consumption-leisure sequences from k_{0} is denoted by $\sum\left(k_{0}\right)$. Assumption F3 implies that

$$
\begin{aligned}
f_{k}(+\infty, m) & =F_{k}(+\infty, m)+(1-\delta)<1 \\
f_{k}(0, m) & =F_{k}(0, m)+(1-\delta)>1
\end{aligned}
$$

[^4]It follows that there exists $\bar{k}>0$ such that: (i) $f(\bar{k}, m)=\bar{k}$, (ii) $k>\bar{k}$ implies $f(k, m)<k$, (iii) $k<\bar{k}$ implies $f(k, m)>k$. Therefore for any $\mathbf{k} \in \Pi\left(k_{0}\right)$, we have $0 \leq k_{t} \leq \max \left(k_{0}, \bar{k}\right)$. Thus, a feasible sequence \mathbf{k} is in ℓ_{+}^{∞} which in turn implies that any feasible sequence (\mathbf{c}, \mathbf{l}) belongs to $\ell_{+}^{\infty} \times[0,1]^{\infty}$.

In what follows, we study the Pareto optimum problem. We show that the Lagrange multipliers are in ℓ_{+}^{1}. Then these multipliers will be used to define a price and wage system for the equilibrium.

Let $\Delta=\left\{\eta_{1}, \eta_{2}, \ldots, \eta_{m} \mid \eta_{i} \geq 0\right.$ and $\left.\sum_{i=1}^{m} \eta_{i}=1\right\}$. Given a vector of welfare weights $\eta \in \Delta$, define the Pareto problem ${ }^{4}$

$$
\begin{align*}
& \max \sum_{i=1}^{m} \eta_{i} \sum_{t=0}^{\infty} \beta_{i}^{t} u^{i}\left(c_{t}^{i}, l_{t}^{i}\right) \tag{Q}\\
& \text { s.t. } \quad \sum_{i=1}^{m} c_{t}^{i}+k_{t+1} \leq f\left(k_{t}, \sum_{i=1}^{m}\left(1-l_{t}^{i}\right)\right), \forall t \\
& \\
& c_{t}^{i} \geq 0, l_{t}^{i} \geq 0, l_{t}^{i} \leq 1, \forall i, \forall t \\
& \\
& k_{t} \geq 0, \forall t \text { and } k_{0} \text { given. }
\end{align*}
$$

Note that, for all $k_{0} \geq 0,0 \leq k_{t} \leq \max \left(k_{0}, \bar{k}\right)$, then $0 \leq c_{t}^{i} \leq f\left(\max \left(k_{0}, \bar{k}\right), m\right) \equiv$ $A, \forall t, \forall i=1, \ldots, m$. Therefore, the sequence $\left(u^{i}\right)_{n}=\sum_{i=1}^{n} \beta_{i}^{t} u^{i}\left(c_{t}^{i}, l_{t}^{i}\right)$ is increasing and bounded and will converge. Thus we can write

$$
\sum_{i=1}^{m} \eta_{i} \sum_{t=0}^{\infty} \beta_{i}^{t} u^{i}\left(c_{t}^{i}, l_{t}^{i}\right)=\sum_{t=0}^{\infty} \sum_{i=1}^{m} \eta_{i} \beta_{i}^{t} u^{i}\left(c_{t}^{i}, l_{t}^{i}\right)
$$

Let $\mathbf{x}=(\mathbf{c}, \mathbf{k}, \mathbf{l}) \in\left(\ell_{+}^{\infty}\right)^{m} \times \ell_{+}^{\infty} \times\left(\ell_{+}^{\infty}\right)^{m}$.
Define

$$
\begin{aligned}
\mathcal{F}(\mathbf{x}) & =-\sum_{t=0}^{\infty} \sum_{i=1}^{m} \eta_{i} \beta_{i}^{t} u^{i}\left(c_{t}^{i}, l_{t}^{i}\right) \\
\Phi_{t}^{1}(\mathbf{x}) & =\sum_{i=1}^{m} c_{t}^{i}+k_{t+1}-f\left(k_{t}, \sum_{i=1}^{m}\left(1-l_{t}^{i}\right)\right) \\
\Phi_{t}^{2 i}(\mathbf{x}) & =-c_{t}^{i} \\
\Phi_{t}^{3}(\mathbf{x}) & =-k_{t} \\
\Phi_{t}^{4 i}(\mathbf{x}) & =-l_{t}^{i} \\
\Phi_{t}^{5 i}(\mathbf{x}) & =l_{t}^{i}-1 \\
\Phi_{t} & =\left(\Phi_{t}^{1}, \Phi_{t}^{2 i}, \Phi_{t+1}^{3}, \Phi_{t}^{4 i}, \Phi_{t}^{5 i}\right), \forall t, \forall i=1, \ldots, m
\end{aligned}
$$

The Pareto problem can be written as:

$$
\begin{equation*}
\min \mathcal{F}(\mathbf{x}) \tag{P}
\end{equation*}
$$

[^5]$$
\text { s.t. } \Phi(\mathbf{x}) \leq \mathbf{0}, \mathbf{x} \in\left(\ell_{+}^{\infty}\right)^{m} \times \ell_{+}^{\infty} \times\left(\ell_{+}^{\infty}\right)^{m}
$$
where:
\[

$$
\begin{aligned}
\mathcal{F} & :\left(\ell_{+}^{\infty}\right)^{m} \times \ell_{+}^{\infty} \times\left(\ell_{+}^{\infty}\right)^{m} \rightarrow \mathbb{R} \cup\{+\infty\} \\
\Phi & =\left(\Phi_{t}\right)_{t=0, \ldots, \infty}:\left(\ell_{+}^{\infty}\right)^{m} \times \ell_{+}^{\infty} \times\left(\ell_{+}^{\infty}\right)^{m} \rightarrow \mathbb{R} \cup\{+\infty\} \\
\text { Let } C & =\operatorname{dom}(\mathcal{F})=\left\{\mathbf{x} \in\left(\ell_{+}^{\infty}\right)^{m} \times \ell_{+}^{\infty} \times\left(\ell_{+}^{\infty}\right)^{m} \mid \mathcal{F}(\mathbf{x})<+\infty\right\} \\
\Gamma & =\operatorname{dom}(\Phi)=\left\{\mathbf{x} \in\left(\ell_{+}^{\infty}\right)^{m} \times l_{+}^{\infty} \times\left(\ell_{+}^{\infty}\right)^{m} \mid \Phi_{t}(\mathbf{x})<+\infty, \forall t\right\} .
\end{aligned}
$$
\]

The following theorem follows from Theorem 1 and Theorem 2 in Le Van and Saglam (2004) (see also Dechert (1982)).

Theorem 1 Let $\mathbf{x}, \mathbf{y} \in\left(\ell_{+}^{\infty}\right)^{m} \times \ell_{+}^{\infty} \times\left(\ell_{+}^{\infty}\right)^{m}, T \in N$.
Define $x_{t}^{T}(\mathbf{x}, \mathbf{y})= \begin{cases}x_{t} & \text { if } t \leq T \\ y_{t} & \text { if } t>T\end{cases}$
Suppose that two following assumptions are satisfied:
T1: If $\mathbf{x} \in C, \mathbf{y} \in\left(\ell_{+}^{\infty}\right)^{m} \times \ell_{+}^{\infty} \times\left(\ell_{+}^{\infty}\right)^{m}$ and $\forall T \geq T_{0}, \mathbf{x}^{T}(\mathbf{x}, \mathbf{y}) \in C$ then $\mathcal{F}\left(\mathbf{x}^{T}(\mathbf{x}, \mathbf{y})\right) \rightarrow \mathcal{F}(\mathbf{x})$ when $T \rightarrow \infty$.

T2: If $\mathbf{x} \in \Gamma, \mathbf{y} \in \Gamma$ and $\mathbf{x}^{T}(\mathbf{x}, \mathbf{y}) \in \Gamma, \forall T \geq T_{0}$, then
a) $\Phi_{t}\left(\mathbf{x}^{T}(\mathbf{x}, \mathbf{y})\right) \rightarrow \Phi_{t}(\mathbf{x})$ as $T \rightarrow \infty$
b) $\exists M$ s.t. $\forall T \geq T_{0},\left\|\Phi_{t}\left(\mathbf{x}^{T}(\mathbf{x}, \mathbf{y})\right)\right\| \leq M$
c) $\forall N \geq T_{0}, \lim _{t \rightarrow \infty}\left[\Phi_{t}\left(\mathbf{x}^{T}(\mathbf{x}, \mathbf{y})\right)-\Phi_{t}(\mathbf{y})\right]=0$

Let \mathbf{x}^{*} be a solution to (\boldsymbol{P}) and $\overline{\mathbf{x}} \in C$ satisfy the Strong Slater condition:

$$
\sup _{t} \Phi_{t}(\overline{\mathbf{x}})<0
$$

Suppose $\mathbf{x}^{T}\left(\mathbf{x}^{*}, \overline{\mathbf{x}}\right) \in C \cap \Gamma$. Then, there exist $\boldsymbol{\Lambda} \in l_{+}^{1} \backslash\{0\}$ such that

$$
\mathcal{F}(\mathbf{x})+\boldsymbol{\Lambda} \Phi(\mathbf{x}) \geq \mathcal{F}\left(\mathbf{x}^{*}\right)+\Lambda \Phi\left(\mathbf{x}^{*}\right), \forall \mathbf{x} \in\left(\ell^{\infty}\right)^{m} \times \ell^{\infty} \times\left(\ell^{\infty}\right)^{m}
$$

and $\Lambda \Phi\left(\mathrm{x}^{*}\right)=0$.
Obviously, for any $\eta \in \Delta$, an optimal path will depend on η. In what follows, if possible, we will suppress η and denote by $\left(\mathbf{c}^{* i}, \mathbf{k}^{*}, \mathbf{L}^{* i}, \mathbf{l}^{* i}\right)$ any optimal path for each agent i. The following proposition characterizes the Lagrange multipliers of the Pareto problem.

Proposition 1 If $\mathbf{x}^{*}=\left(\mathbf{c}^{* i}, \mathbf{k}^{*}, \mathbf{l}^{* i}\right)$ is a solution to the Pareto problem (Q) :then there exist $\forall i=1, \ldots, m, \lambda=\left(\lambda^{1}, \lambda^{2 i}, \lambda^{3}, \lambda^{4 i}, \lambda^{5 i}\right) \in \ell_{+}^{1} \times\left(\ell_{+}^{1}\right)^{m} \times \ell_{+}^{1} \times\left(\ell_{+}^{1}\right)^{m} \times$ $\left(\ell_{+}^{1}\right)^{m}, \lambda \neq \mathbf{0}$ such that

$$
\begin{aligned}
& \sum_{t=0}^{\infty} \sum_{i=1}^{m} \eta_{i} \beta_{i}^{t} u^{i}\left(c_{t}^{* i}, l_{t}^{* i}\right)-\sum_{t=0}^{\infty} \lambda_{t}^{1}\left(\sum_{i=1}^{m} c_{t}^{* i}+k_{t+1}^{*}-f\left(k_{t}^{*}, L_{t}^{*}\right)\right) \\
& +\sum_{t=0}^{\infty} \sum_{i=1}^{m} \lambda_{t}^{2 i} c_{t}^{* i}+\sum_{t=0}^{\infty} \lambda_{t}^{3} k_{t}^{*}+\sum_{t=0}^{\infty} \sum_{i=1}^{m} \lambda_{t}^{4 i} l_{t}^{* i}+\sum_{t=0}^{\infty} \sum_{i=1}^{m} \lambda_{t}^{5 i}\left(1-l_{t}^{* i}\right)
\end{aligned}
$$

$$
\begin{gather*}
\geq \sum_{t=0}^{\infty} \sum_{i=1}^{m} \eta_{i} \beta_{i}^{t} u^{i}\left(c_{t}^{i}, l_{t}^{i}\right)-\sum_{t=0}^{\infty} \lambda_{t}^{1}\left(\sum_{i=1}^{m} c_{t}^{i}+k_{t+1}-f\left(k_{t}, L_{t}\right)\right) \\
+\sum_{t=0}^{\infty} \sum_{i=1}^{m} \lambda_{t}^{2 i} c_{t}^{i}+\sum_{t=0}^{\infty} \lambda_{t}^{3} k_{t}+\sum_{t=0}^{\infty} \sum_{i=1}^{m} \lambda_{t}^{4 i} l_{t}^{i}+\sum_{t=0}^{\infty} \sum_{i=1}^{m} \lambda_{t}^{5 i}\left(1-l_{t}^{i}\right), \tag{1}\\
\lambda_{t}^{1}\left[\sum_{i=1}^{m} c_{t}^{* i}+k_{t+1}^{*}-f\left(k_{t}^{*}, \sum_{i=1}^{m} L_{t}^{* i}\right)\right]=0 \tag{2}\\
\lambda_{t}^{2 i} c_{t}^{* i}=0, \forall i=1, \ldots, m \tag{3}\\
\lambda_{t}^{3} k_{t}^{*}=0 \tag{4}\\
\lambda_{t}^{4 i} l_{t}^{* i}=0, \forall i=1, \ldots, m \tag{5}\\
\lambda_{t}^{5 i}\left(1-l_{t}^{* i}\right)=0, \forall i=1, \ldots, m \tag{6}\\
0 \in \eta_{i} \beta_{i}^{t} \partial_{1} u^{i}\left(c_{t}^{* i}, l_{t}^{* i}\right)-\left\{\lambda_{t}^{1}\right\}+\left\{\lambda_{t}^{2 i}\right\}, \forall i=1, \ldots, m \tag{7}\\
0 \in \eta_{i} \beta_{i}^{t} \partial_{2} u^{i}\left(c_{t}^{* i}, l_{t}^{* i}\right)-\lambda_{t}^{1} \partial_{2} f\left(k_{t}^{*}, L_{t}^{*}\right)+\left\{\lambda_{t}^{4 i}\right\}-\left\{\lambda_{t}^{5 i}\right\}, \forall i=1, \ldots, m \tag{8}\\
0 \in \lambda_{t}^{1} \partial_{1} f\left(k_{t}^{*}, L_{t}^{*}\right)+\left\{\lambda_{t}^{3}\right\}-\left\{\lambda_{t-1}^{1}\right\} \tag{9}
\end{gather*}
$$

where, $L_{t}^{*}=\sum_{i=1}^{m} L_{t}^{* i}=\sum_{i=1}^{m}\left(1-l_{t}^{* i}\right), \partial_{j} u\left(c_{t}^{* i}, l_{t}^{* i}\right), \partial_{j} f\left(k_{t}^{*}, L_{t}^{*}\right)$ respectively denote the projection on the $j^{\text {th }}$ component of the subdifferential of function u at $\left(c_{t}^{* i}, l_{t}^{* i}\right)$ and the function f at $\left(k_{t}^{*}, L_{t}^{*}\right) .{ }^{5}$

Proof: We show that the Strong Slater condition holds. Since $f_{k}(0, m)>1,{ }^{6}$ for all $k_{0}>0$, there exists some $\widehat{k} \in\left(0, k_{0}\right)$ such that: $0<\widehat{k}<f(\widehat{k}, m)$ and $0<\widehat{k}<f\left(k_{0}, m\right)$. Thus, there exist two small positive numbers $\varepsilon, \varepsilon_{1}$ such that:

$$
0<\widehat{k}+\varepsilon<f\left(\widehat{k}, m-\varepsilon_{1}\right) \text { and } 0<\widehat{k}+\varepsilon<f\left(k_{0}, m-\varepsilon_{1}\right)
$$

Denote $\overline{\mathbf{x}}=(\overline{\mathbf{c}}, \overline{\mathbf{k}}, \overline{\mathbf{l}})$ where $\overline{\mathbf{c}}=\left(\overline{\mathbf{c}}^{i}\right)_{i=1}^{m}$, and

$$
\overline{\mathbf{c}}^{i}=\left(\bar{c}_{t}^{i}\right)_{t=0, \ldots, \infty}=\left(\frac{\varepsilon}{m}, \frac{\varepsilon}{m}, \frac{\varepsilon}{m}, \ldots\right)
$$

$\overline{\mathbf{l}}=\left(\overline{\mathbf{l}}^{i}\right)_{i=1}^{m}$, where

$$
\overline{\mathrm{l}}^{-i}=\left(\bar{l}_{t}^{i}\right)_{t=0, \ldots, \infty}=\left(\frac{\varepsilon_{1}}{m}, \frac{\varepsilon_{1}}{m}, \frac{\varepsilon_{1}}{m}, \ldots\right) .
$$

[^6]and $\overline{\mathbf{k}}=\left(k_{0}, \widehat{k}, \widehat{k}, \ldots\right)$. We have
\[

$$
\begin{aligned}
\Phi_{0}^{1}(\overline{\mathbf{x}}) & =\sum_{i=0}^{m} c_{0}^{i}+k_{1}-f\left(k_{0}, \sum_{i=1}^{m}\left(1-l_{0}^{i}\right)\right) \\
& =\varepsilon+\widehat{k}-f\left(k_{0}, m-\varepsilon_{1}\right)<0 \\
\Phi_{1}^{1}(\overline{\mathbf{x}}) & =\sum_{i=0}^{m} c_{1}^{i}+k_{2}-f\left(k_{1}, \sum_{i=1}^{m}\left(1-l_{1}^{i}\right)\right) \\
& =\varepsilon+\widehat{k}-f\left(\widehat{k}, m-\varepsilon_{1}\right)<0 \\
\Phi_{t}^{1}(\overline{\mathbf{x}}) & =\varepsilon+\widehat{k}-f\left(\widehat{k}, m-\varepsilon_{1}\right)<0, \forall t \geq 2 \\
\Phi_{t}^{2 i}(\overline{\mathbf{x}}) & =-\bar{c}_{t}^{i}=-\frac{\varepsilon}{m}<0, \forall t \geq 0, \forall i=1, \ldots, m \\
\Phi_{0}^{3}(\overline{\mathbf{x}}) & =-k_{0}<0 ; \\
\Phi_{t}^{3}(\overline{\mathbf{x}}) & =-\widehat{k}<0 \quad \forall t \geq 1 \\
\Phi_{t}^{4 i}(\overline{\mathbf{x}}) & =-\frac{\varepsilon_{1}}{m}<0, \forall t \geq 0, \forall i=1, \ldots, m \\
\Phi_{t}^{5 i}(\overline{\mathbf{x}}) & =\frac{\varepsilon_{1}}{m}-1<0, \forall t \geq 0, \forall i=1, \ldots, m .
\end{aligned}
$$
\]

Therefore, the Strong Slater condition is satisfied.
It is obvious that, $\forall T, \mathbf{x}^{T}\left(\mathbf{x}^{*}, \overline{\mathbf{x}}\right)$ belongs to $\left(\ell_{+}^{\infty}\right)^{m} \times l_{+}^{\infty} \times\left(\ell_{+}^{\infty}\right)^{m}$.
As in Le Van and Saglam (2004), Assumption T2 is satisfied. We now check Assumption T1.

For any $\widetilde{\mathbf{x}} \in C, \widetilde{\widetilde{\mathbf{x}}} \in\left(\ell_{+}^{\infty}\right)^{m} \times \ell_{+}^{\infty} \times\left(\ell_{+}^{\infty}\right)^{m}$ such that for any $T, \mathbf{x}^{T}(\widetilde{\mathbf{x}}, \widetilde{\widetilde{\mathbf{x}}}) \in C$ we have

$$
\mathcal{F}\left(\mathbf{x}^{T}(\widetilde{\mathbf{x}}, \widetilde{\mathbf{x}})\right)=-\sum_{t=0}^{T} \sum_{i=1}^{m} \eta_{i} \beta_{i}^{t} u^{i}\left(\tilde{c_{t}^{i}}, \widetilde{l_{t}^{i}}\right)-\sum_{t=T+1}^{\infty} \sum_{i=1}^{m} \eta_{i} \beta_{i}^{t} u^{i}\left(\widetilde{c_{t}^{i}}, \widetilde{l_{t}^{i}}\right) .
$$

As $\widetilde{\widetilde{\mathbf{x}}} \in\left(\ell_{+}^{\infty}\right)^{m} \times \ell_{+}^{\infty} \times\left(\ell_{+}^{\infty}\right)^{m}, \sup _{t}\left|\widetilde{\tilde{c}_{t}}\right|<+\infty$, there exists $A>0$, $\forall t$, such that $\left|\widetilde{\widetilde{c}}_{t}\right| \leq A$. Since $\beta_{i} \in(0,1)$, as $T \rightarrow \infty$ we have
$0 \leq \sum_{t=T+1}^{\infty} \sum_{i=1}^{m} \eta_{i} \beta_{i}^{t} u^{i}\left(\underset{c_{t}^{i}}{\widetilde{l_{i}^{i}}}\right) \leq u(A, 1) \sum_{t=T+1}^{\infty} \sum_{i=1}^{m} \eta_{i} \beta_{i}^{t}=u(A, 1) \sum_{i=1}^{m} \sum_{t=T+1}^{\infty} \eta_{i} \beta_{i}^{t} \rightarrow 0$
where $u(A, 1)=\max \left\{u_{i}(A, 1), i=1, \ldots, m\right\}$. Hence, $\mathcal{F}\left(\mathbf{x}^{T}(\widetilde{\mathbf{x}}, \widetilde{\widetilde{\mathbf{x}}})\right) \rightarrow \mathcal{F}(\widetilde{\mathbf{x}})$ when $T \rightarrow \infty$. Taking account of the Theorem 1 , we get (1)-(6).

Obviously, $\cap_{i=1}^{m} r i\left(\operatorname{dom}\left(u^{i}\right)\right) \neq \emptyset$ where $r i\left(\operatorname{dom}\left(u^{i}\right)\right)$ is the relative interior of $\operatorname{dom}\left(u^{i}\right)$. It follows from the Proposition 6.5.5 in Florenzano and Le Van (2001), we have

$$
\partial \sum_{i=1}^{m} \eta_{i} \beta_{i}^{t} u^{i}\left(c_{t}^{* i}, l_{t}^{* i}\right)=\eta_{i} \beta_{i}^{t} \sum_{i=1}^{m} \partial u^{i}\left(c_{t}^{* i}, l_{t}^{* i}\right) .
$$

We then get (7)-(9) as the Kuhn-Tucker first-order conditions.

Remark 1 1. It is easy to prove that $\eta_{i}=0 \Rightarrow c_{t}^{* i}=0, l_{t}^{* i}=0, \forall t$.
2. For any optimal solution $\left(\mathbf{c}^{* i}, \mathbf{k}^{*}, \mathbf{l}^{* i}\right)$, we have for any t, any $i, \partial_{1} u^{i}\left(c_{t}^{* i}, l_{t}^{* i}\right) \neq$ $\emptyset, \partial_{2} u^{i}\left(c_{t}^{* i}, l_{t}^{* i}\right) \neq \emptyset, \partial_{1} f\left(k_{t}^{*}, L_{t}^{*}\right) \neq \emptyset, \partial_{2} f\left(k_{t}^{*}, L_{t}^{*}\right) \neq \emptyset$, where $L_{t}^{*}=$ $m-\sum_{i} l_{t}^{* i}$.
3. We have $c_{t}^{* i}>0$ iff $l_{t}^{* i}>0$. In this case, $\partial_{1} u^{i}\left(c_{t}^{* i}, l_{t}^{* i}\right)=\left\{u_{c}^{i}\left(c_{t}^{* i}, l_{t}^{* i}\right)\right\}, \partial_{2} u^{i}\left(c_{t}^{* i}, l_{t}^{* i}\right)=$ $\left\{u_{l}^{i}\left(c_{t}^{* i}, l_{t}^{* i}\right)\right\}$.
4. For any $k_{0}>0$, there exists t with $\sum_{i} c_{t}^{* i}>0$ and hence $\sum_{i} l_{t}^{* i}>0$ (if not, the value of the Pareto problem is null which is a contradiction).

In the following proposition, we will prove the positiveness of the optimal capital path.

Proposition 2 If $k_{0}>0$, the optimal capital path satisfies $k_{t}^{*}>0, \forall t$.

Proof: Let $k_{0}>0$ but assume that $k_{1}^{*}=0$. From (9), $L_{1}^{*}=0$. This implies $\sum_{i} c_{1}^{* i}=0$ and $l_{1}^{* i}=1, \forall i$: a contradiction with (7). Hence $k_{1}^{*}>0$. By induction, $k_{t}^{*}>0, \forall t>0$.

Remark 2 From (9) and Proposition 2, if $k_{0}>0$, we have $L_{t}^{*}>0$ for any $t \geq 0$. Hence, for any $t \geq 0, \partial_{1} f\left(k_{t}^{*}, L_{t}^{*}\right)=\left\{f_{k}\left(k_{t}^{*}, L_{t}^{*}\right)\right\}, \partial_{2} f\left(k_{t}^{*}, L_{t}^{*}\right)=$ $\left\{f_{L}\left(k_{t}^{*}, L_{t}^{*}\right)\right\}$.

Proposition 3 Let $k_{0}>0$.
(a) With any $\eta \in \Delta$, there exists a unique solution to the Pareto problem $\left(\left(\mathbf{c}^{* i}\right),\left(\mathbf{l}^{* i}\right), \mathbf{k}^{*}\right)$. We have: For any $t \geq 0$,

$$
\begin{gather*}
\lambda_{t}^{1}(\eta) \in \cap_{i \in I} \eta_{i} \beta_{i}^{t} \partial_{1} u^{i}\left(c_{t}^{* i}, l_{t}^{* i}\right) \tag{10}\\
\lambda_{t}^{1}(\eta) f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) \in \cap_{i \in I} \eta_{i} \beta_{i}^{t} \partial_{2} u^{i}\left(c_{t}^{* i}, l_{t}^{* i}\right) \tag{11}
\end{gather*}
$$

and for any $t \geq 1$,

$$
\begin{equation*}
0 \in \lambda_{t}^{1}(\eta) \partial_{1} f\left(k_{t}^{*}, L_{t}^{*}\right)-\lambda_{t-1}^{1}(\eta) \tag{12}
\end{equation*}
$$

(b) Conversely, if the sequences $\mathbf{c}^{* i}, \mathbf{l}^{* i}, \mathbf{k}^{*}, \mathbf{L}^{*}$ satisfy

$$
\begin{aligned}
L_{t}^{*} & =\sum_{i}\left(1-l_{t}^{* i}\right), \forall t \geq 0 \\
\sum_{i} c_{t}^{* i} & =f\left(k_{t}^{*}, L_{t}^{*}\right)-k_{t+1}^{*}, \forall t \geq 0 \\
k_{0}^{*} & =k_{0}
\end{aligned}
$$

and if there exists $\lambda^{1} \in \ell_{+}^{1}$ which satisfies (10), (11) and (12), then $\mathbf{c}^{* i}, \mathbf{l}^{* i}, \mathbf{k}^{*}$ solve the Pareto problem with weights η and λ^{1} is an associated multiplier.

Proof: (a) For any $c_{t} \geq 0$, we have

$$
\begin{aligned}
\eta_{i} \beta_{i}^{t} u^{i}\left(c_{t}^{* i}, l_{t}^{* i}\right)-\eta_{i} \beta_{i}^{t} u^{i}\left(c_{t}, l_{t}^{* i}\right) & \geq\left(\lambda_{t}^{1}-\lambda_{t}^{2 i}\right)\left(c_{t}^{* i}-c_{t}\right) \\
& \geq \lambda_{t}^{1}\left(c_{t}^{* i}-c_{t}\right)+\lambda_{t}^{2 i} c_{t} \geq \lambda_{t}^{1}\left(c_{t}^{* i}-c_{t}\right)
\end{aligned}
$$

If $c_{t}<0$, then $u^{i}\left(c_{t}, l_{t}^{* i}\right)=-\infty$, and the inequality still holds. Thus, $\lambda_{t}^{1}(\eta) \in$ $\eta_{i} \beta_{i}^{t} \partial_{1} u^{i}\left(c_{t}^{* i}, l_{t}^{* i}\right), \forall i$.
Similarly, we can prove $\lambda_{t}^{1}(\eta) f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) \in \cap_{i \in I} \eta_{i} \beta_{i}^{t} \partial_{2} u^{i}\left(c_{t}^{* i}, l_{t}^{* i}\right)$.
We have from (9),

$$
\begin{aligned}
\lambda_{t}^{1}(\eta)\left[f\left(k_{t}^{*}, L_{t}^{*}\right)-f\left(k, L_{t}^{*}\right)\right] & \geq\left[\lambda_{t-1}^{1}-\lambda_{t}^{3}\right]\left(k_{t}^{*}-k\right) \\
& \geq \lambda_{t-1}^{1}\left(k_{t}^{*}-k\right)+\lambda_{t}^{3} k \geq \lambda_{t-1}^{1}\left(k_{t}^{*}-k\right), \text { if } k \geq 0
\end{aligned}
$$

If $k<0$, then $f(k, L)=-\infty$ and the inequality still holds.
(b) The proof is easy.

Proposition 4 Let $k_{0}>0$. Then there exists a unique multiplier $\lambda^{\mathbf{1}} \in \ell^{1}$.
Proof: Existence has been proven. Let us prove uniqueness. First observe that, from Remark 2, we have $\partial_{1} f\left(k_{t}^{*}, L_{t}^{*}\right)=\left\{f_{k}\left(k_{t}^{*}, L_{t}^{*}\right)\right\}, \partial_{2} f\left(k_{t}^{*}, L_{t}^{*}\right)=$ $\left\{f_{L}\left(k_{t}^{*}, L_{t}^{*}\right)\right\}$, for every t. We have three cases.

1. If for any $t, \sum_{i} c_{t}^{* i}>0$, then $\lambda_{t}^{1}(\eta)=\eta_{j} \beta_{j}^{t} u^{j}\left(c_{t}^{* j}, l_{t}^{* j}\right)$ with $c_{t}^{* j}>0$.
2. Since $k_{0}>0$ there exists t with $\sum_{i} c_{t}^{* i}>0$.
(a) When $\sum_{i} c_{0}^{* i}>0$, let T be the first date where $\sum_{i} c_{T}^{* i}=0$ (and hence $\sum_{i} l_{T}^{* i}=0$). From $t=0$ to $t=T-1, \lambda_{t}^{1}(\eta)$ is uniquely determined. We have, from (12), $\lambda_{T}^{1}(\eta) f_{k}\left(k_{T}^{*}, m\right)=\lambda_{T-1}^{1}(\eta)$ and $\lambda_{T}^{1}(\eta)$ is uniquely determined. But we also have $\lambda_{T+1}^{1}(\eta) f_{k}\left(k_{T+1}^{*}, L_{T+1}^{*}\right)=\lambda_{T}^{1}(\eta)$ and $\lambda_{T+1}^{1}(\eta)$ is uniquely determined. By induction, the result holds for every t.
(b) When $\sum_{i} c_{0}^{* i}=0$, let T be the first date where $\sum_{i} c_{T}^{* i}>0$. In this case, $\lambda_{T}^{1}(\eta)=\eta_{j} \beta_{j}^{t} u_{c}^{j}\left(c_{T}^{* j}, l_{T}^{* j}\right)$ with $c_{t}^{* j}>0$. We have, from (12), $\lambda_{T}^{1}(\eta) f_{k}\left(k_{T}^{*}, L_{T}^{*}\right)=\lambda_{T-1}^{1}(\eta)$ and $\lambda_{T-1}^{1}(\eta)$ is uniquely determined. By backward induction $\lambda_{t}^{1}(\eta)$ is uniquely determined from 0 to $T-1$. We also have $\lambda_{T+1}^{1}(\eta) f_{k}\left(k_{T+1}^{*}, L_{T+1}^{*}\right)=\lambda_{T}^{1}(\eta)$ and $\lambda_{T+1}^{1}(\eta)$ is uniquely determined. By forward induction, the result holds for every $t \geq$ $T+1$.

Let us denote $I=\left\{i \mid \eta_{i}>0\right\}, \beta=\max \left\{\beta_{i} \mid i \in I\right\}, I_{1}=\left\{i \in I \mid \beta_{i}=\beta\right\}$ and $I_{2}=\left\{i \in I \mid \beta_{i}<\beta\right\}$.

We now show that the consumption and leisure paths of all agents with a discount factor less than the maximum one converge to zero. The proof is very simple compared to the one in Le Van, et al. (2007) which uses the supermodular structure inspired by lattice programming.

Proposition 5 If $\left(\mathbf{k}^{*}, \mathbf{c}^{* i}, \mathbf{l}^{* i}\right)$ denotes the optimal path starting from k_{0}, then $\forall i \in I_{2}, c_{t}^{* i} \longrightarrow 0$ and $l_{t}^{* i} \longrightarrow 0$.

Proof: Consider problem \mathcal{R}_{t}

$$
\begin{aligned}
V_{t}\left(k_{t}, k_{t+1}\right) & =\max \sum_{i=1}^{m} \eta_{i} \beta_{i}^{t} u^{i}\left(c_{t}^{i}, l_{t}^{i}\right) \\
\text { s.t. } \sum_{i=1}^{m} c_{t}^{i}+k_{t+1} & \leq F\left(k_{t}, \sum_{i=1}^{m}\left(1-l_{t}^{i}\right)\right)+(1-\delta) k_{t} .
\end{aligned}
$$

It is easy to see that the Pareto problem is equivalent to

$$
\begin{array}{ll}
& \max \sum_{t=0}^{\infty} V_{t}\left(k_{t}, k_{t+1}\right) \\
\text { s.t. } 0 \leq \quad & k_{t+1} \leq F\left(k_{t}, m\right)+(1-\delta) k_{t}, \forall t \geq 0 \\
& k_{0} \text { is given. }
\end{array}
$$

Observe that

$$
\begin{aligned}
V_{t}\left(k_{t}, k_{t+1}\right) & =\beta^{t} \max \sum_{i=1}^{m} \eta_{i}\left(\frac{\beta_{i}}{\beta}\right)^{t} u^{i}\left(c_{t}^{i}, l_{t}^{i}\right) \\
\text { s.t. } \sum_{i=1}^{m} c_{t}^{i}+k_{t+1} & \leq F\left(k_{t}, \sum_{i=1}^{m}\left(1-l_{t}^{i}\right)\right)+(1-\delta) k_{t} .
\end{aligned}
$$

Denote $Z^{t}=\left(\eta_{i}\left(\frac{\beta_{i}}{\beta}\right)^{t}\right)$. From the Berge Maximum Theorem (1959), the strict concavity and the increasingness of the utility functions, the optimal $c^{* i}, l^{* i}$ are continuous with respect to $\left(Z^{t}, k_{t}, k_{t+1}\right)$. Denote these functions by $\left(\Gamma^{i}\left(Z^{t}, k_{t}^{*}, k_{t+1}^{*}\right), \Lambda^{i}\left(Z^{t}, k_{t}^{*}, k_{t+1}^{*}\right)\right)_{i}$. Let κ^{*}, ξ^{*} denote the limit points of k_{t}^{*}, k_{t+1}^{*} when $t \rightarrow+\infty$. Then, for $i \in I_{2}, \Gamma^{i}\left(Z^{t}, k_{t}^{*}, k_{t+1}^{*}\right)$ converges to $\Gamma^{i}\left(0_{I_{2}},\left(\eta_{i}\right)_{i \in I_{2}}, \kappa^{*}, \xi^{*}\right)=$ 0 , and $\Lambda^{i}\left(Z^{t}, k_{t}^{*}, k_{t+1}^{*}\right)$ converges to $\Lambda^{i}\left(0_{I_{2}},\left(\eta_{i}\right)_{i \in I_{2}}, \kappa^{*}, \xi^{*}\right)=0$.

3 Existence of competitive equilibrium

We now give the characterization of the competitive equilibrium. For each consumer i, let $\alpha^{i}>0$ denote the share of the profit of the firm which is owned by consumer i. We have $\sum_{i=1}^{m} \alpha^{i}=1$. Let $\vartheta^{i}>0$ be the share of the initial endowment owned by consumer i. Obviously, $\sum_{i=1}^{m} \vartheta^{i}=1$. Clearly, $\vartheta^{i} k_{0}$ is the endowment of consumer i.

Definition 1 Let $k_{0}>0$. A competitive equilibrium for this model consists of a sequence of prices $\mathbf{p}^{*}=\left(p_{t}^{*}\right)_{t=0}^{\infty}$ for the consumption good, a wage sequence $\mathbf{w}^{*}=\left(w_{t}^{*}\right)_{t=0}^{\infty}$ for labor, a price r for the initial capital stock k_{0} and an allocation $\left\{\mathbf{c}^{* i}, \mathbf{k}^{*}, \mathbf{l}^{* i}, \mathbf{L}^{* i}\right\}$ such that
i)

$$
\begin{aligned}
\mathbf{c}^{*} & \in \ell_{+}^{\infty},,^{* i} \in \ell_{+}^{\infty}, \mathbf{L}^{* i} \in \ell_{+}^{\infty}, \mathbf{k}^{*} \in \ell_{+}^{\infty} \\
\mathbf{p}^{*} & \in \ell_{+}^{1} \backslash\{0\}, \mathbf{w}^{*} \in \ell_{+}^{1} \backslash\{0\}, r>0
\end{aligned}
$$

ii) For every $i,\left(\mathbf{c}^{* i}, \mathbf{l}^{* i}\right)$ is a solution to the problem

$$
\begin{gathered}
\max \sum_{t=0}^{\infty} \beta_{i}^{t} u^{i}\left(c_{t}^{i}, l_{t}^{i}\right) \\
\text { s.t } \quad \sum_{t=0}^{\infty} p_{t}^{*} c_{t}^{i}+\sum_{t=0}^{\infty} w_{t}^{*} l_{t}^{i} \leq \sum_{t=0}^{\infty} w_{t}^{*}+\vartheta^{i} r k_{0}+\alpha^{i} \pi^{*}
\end{gathered}
$$

where π^{*} is the maximum profit of the single firm.
iii) $\left(\mathbf{k}^{*}, \mathbf{L}^{*}\right)$ is a solution to the firm's problem

$$
\begin{aligned}
\pi^{*} & =\max \sum_{t=0}^{\infty} p_{t}^{*}\left[f\left(k_{t}, L_{t}\right)-k_{t+1}\right]-\sum_{t=0}^{\infty} w_{t}^{*} L_{t}-r k_{0} \\
\text { st } 0 & \leq k_{t+1} \leq f\left(k_{t}, L_{t}\right), 0 \leq L_{t}, \forall t
\end{aligned}
$$

iv) Markets clear: $\forall t$,

$$
\begin{aligned}
& \sum_{t=1}^{m} c_{t}^{* i}+k_{t+1}^{*}=f\left(k_{t}^{*}, \sum_{i=1}^{m} L_{t}^{* i}\right) \\
& l_{t}^{* i}+L_{t}^{* i}=1, L_{t}^{*}=\sum_{i=1}^{m} L_{t}^{i^{*}} \text { and } k_{0}^{*}=k_{0} .
\end{aligned}
$$

We have proved that there exist Lagrange multipliers

$$
\begin{aligned}
\lambda(\eta) & =\left(\lambda^{\mathbf{1}}(\eta), \lambda^{2 \mathbf{i}}(\eta), \lambda^{\mathbf{3}}(\eta), \lambda^{\mathbf{4} \mathbf{i}}(\eta), \lambda^{5 \mathbf{i}}(\eta)\right) \\
& \in l_{+}^{1} \times\left(l_{+}^{1}\right)^{m} \times l_{+}^{1} \times\left(l_{+}^{1}\right)^{m} \times\left(l_{+}^{1}\right)^{m}, i=1 \ldots m
\end{aligned}
$$

for the Pareto problem. In what follow, we will prove that, with given (\mathbf{c}^{*}, $\left.\mathbf{k}^{*}, \mathbf{l}^{*}, \mathbf{L}^{*}\right)$, one can associate a sequence of prices, $\left(p_{t}^{*}\right)_{t=0}^{\infty}$, and a sequence of wages, $\left(w_{t}^{*}\right)_{t=0}^{\infty}$, defined as

$$
\begin{aligned}
p_{t}^{*} & =\lambda_{t}^{1} \forall t \\
w_{t}^{*} & =\lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) \forall t
\end{aligned}
$$

where $f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) \in \partial_{2} f\left(k_{t}^{*}, L_{t}^{*}\right)$, and a price $r>0$ for the initial capital stock k_{0} such that $\left(\mathbf{c}^{*}, \mathbf{k}^{*}, \mathbf{l}^{*}, \mathbf{L}^{*}, \mathbf{p}^{*}, \mathbf{w}^{*}, r\right)$ is a price equilibrium with transfers (see Definition 2 below). The appropriate transfer to each consumer is the amount
that just allows the consumer to afford the consumption stream allocated by the social optimization problem. Thus, for given weight $\eta \in \Delta$, the required transfers are:

$$
\phi_{i}(\eta)=\sum_{t=0}^{\infty} p_{t}^{*}(\eta) c_{t}^{i *}(\eta)+\sum_{t=0}^{\infty} w_{t}^{*}(\eta) l_{t}^{i *}(\eta)-\sum_{t=0}^{\infty} w_{t}^{*}(\eta)-\vartheta^{i} r k_{0}-\alpha^{i} \pi^{*}(\eta)
$$

where

$$
\pi^{*}(\eta)=\sum_{t=0}^{\infty} p_{t}^{*}(\eta)\left[f\left(k_{t}^{*}(\eta), L_{t}^{*}(\eta)\right)-k_{t+1}^{*}(\eta)\right]-\sum_{t=0}^{\infty} w_{t}^{*}(\eta) L_{t}^{*}(\eta)-r k_{0}
$$

According to the Negishi approach, a competitive equilibrium for this economy corresponds to a set of welfare weights $\eta \in \Delta$ such that these transfers equal to zero. Now we define an equilibrium with transfers.

Definition 2 A given allocation $\left\{\mathbf{c}^{* i}, \mathbf{k}^{*}, \mathbf{l}^{* i}, \mathbf{L}^{* i}\right\}$, together with a price sequence \mathbf{p}^{*} for consumption good, a wage sequence \mathbf{w}^{*} for labor and a price r for the initial capital stock k_{0} constitute an equilibrium with transfers if i)

$$
\begin{aligned}
& \mathbf{c}^{*} \in\left(\ell_{+}^{\infty}\right)^{m}, \mathbf{1}^{*} \in\left(\ell_{+}^{\infty}\right)^{m}, \mathbf{L}^{*} \in\left(\ell_{+}^{\infty}\right)^{m}, \mathbf{k}^{*} \in \ell_{+}^{\infty} \\
& \mathbf{p}^{*} \in \ell_{+}^{1} \backslash\{0\}, \mathbf{w}^{*} \in \ell_{+}^{1} \backslash\{0\}, r>0
\end{aligned}
$$

ii) For every $i=1, \ldots, m,\left(\mathbf{c}^{* i}, \mathbf{l}^{* i}\right)$ is a solution to the problem

$$
\begin{aligned}
& \max \sum_{t=0}^{\infty} \beta_{i}^{t} u^{i}\left(c_{t}^{i}, l_{t}^{i}\right) \\
& \text { st } \quad \sum_{t=0}^{\infty} p_{t}^{*} c_{t}^{i}+\sum_{t=0}^{\infty} w_{t}^{*} l_{t}^{i} \leq \sum_{t=0}^{\infty} p_{t}^{*} c_{t}^{* i}+\sum_{t=0}^{\infty} w_{t}^{*} l_{t}^{* i}
\end{aligned}
$$

iii) $\left(\mathbf{k}^{*}, \mathbf{L}^{*}\right)$ is a solution to the firm's problem:

$$
\begin{aligned}
\pi^{*} & =\max \sum_{t=0}^{\infty} p_{t}^{*}\left[f\left(k_{t}, L_{t}\right)-k_{t+1}\right]-\sum_{t=0}^{\infty} w_{t}^{*} L_{t}-r k_{0} \\
\text { s.t. } \quad 0 & \leq k_{t+1} \leq f\left(k_{t}, L_{t}\right), 0 \leq L_{t}, \forall t
\end{aligned}
$$

iv) Markets clear

$$
\begin{aligned}
& \sum_{i=1}^{m} c_{t}^{* i}+k_{t+1}^{*}=f\left(k_{t}^{*}, \sum_{i=1}^{m} L_{t}^{* i}\right), \forall t \\
& L_{t}^{*}=\sum_{i=1}^{m} L_{t}^{* i}, l_{t}^{* i}=1-L_{t}^{* i} \text { and } k_{0}^{*}=k_{0}
\end{aligned}
$$

The difference between two definition - competitive equilibrium and price equilibrium with transfers - are the budget constraints of consumers. If the
transfers $\phi_{i}(\eta)=0$ for all i, a price equilibrium with transfers is a competitive equilibrium.

Before proving existence of an equilibrium, we will first prove that any solution to the Pareto problem, $\mathbf{x}^{*}=\left(\mathbf{c}^{* i}, \mathbf{k}^{*}, \mathbf{l}^{* i}\right)$, associated with $k_{0}>0$ and $\eta \in \Delta$ is an equilibrium with transfers, with some appropriate prices $\left(p_{t}^{*}\right) \in \ell_{+}^{1} \backslash\{0\}$ and wages $\left(w_{t}^{*}\right) \in \ell_{+}^{1} \backslash\{0\}$.

The following result is required.
Proposition 6 Let $k_{0}>0$.

1. For any $\varepsilon>0$, there exists T such that, for any $\eta \in \Delta$,

$$
\begin{gathered}
\sum_{T}^{+\infty} \lambda^{1}{ }_{t}(\eta) \sum_{i} c_{t}^{* i} \leq \varepsilon \\
\sum_{T}^{+\infty} \lambda^{1}{ }_{t}(\eta) f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) \sum_{i} l_{t}^{* i} \leq \varepsilon \\
\sum_{T}^{+\infty} \lambda^{1}{ }_{t}(\eta) f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) \leq \varepsilon
\end{gathered}
$$

2. There exists M such that, for any $\eta \in \Delta$,

$$
\begin{aligned}
\sum_{t=0}^{+\infty} \lambda^{1}{ }_{t}(\eta) \sum_{i} c_{t}^{* i} & \leq M \\
\sum_{t=0}^{+\infty} \lambda^{1}{ }_{t}(\eta) f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) \sum_{i} l_{t}^{* i} & \leq M \\
\sum_{t=0}^{+\infty} \lambda^{1} t(\eta) f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) & \leq M
\end{aligned}
$$

Proof: 1. We know that there exists A such that $c_{t}^{* i}(\eta) \leq A, \forall t, \forall i, \forall \eta \in \Delta$. Therefore

$$
\begin{aligned}
\frac{\beta^{T}}{1-\beta} \sum_{i} u^{i}(A, 1) & \geq \sum_{T}^{+\infty} \sum_{i} \eta_{i} \beta_{i}^{t}\left[u^{i}\left(c_{t}^{* i}, l_{t}^{* i}\right)-u^{i}(0,0)\right] \\
& \geq \sum_{T}^{+\infty} \lambda_{t}^{1} \sum_{i} c_{t}^{* i}+\sum_{T}^{+\infty} \lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) \sum_{i} l_{t}^{* i}
\end{aligned}
$$

Let $\varepsilon>0$. There exists T such that $\frac{\beta^{T}}{1-\beta} \leq \varepsilon$. Hence, $\sum_{T}^{+\infty} \lambda^{1}{ }_{t}(\eta) \sum_{i} c_{t}^{* i} \leq \varepsilon$, $\sum_{T}^{+\infty} \lambda^{1}{ }_{t}(\eta) f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) \sum_{i} l_{t}^{* i} \leq \varepsilon$, for any η.

We now prove that for T large enough, $\sum_{T}^{+\infty} \lambda^{1}{ }_{t}(\eta) f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) \leq \varepsilon$ for any η. We have

$$
\sum_{i} c_{t}^{* i}=f\left(k_{t}^{*}, L_{t}^{*}\right)-k_{t+1}^{*} .
$$

Since

$$
f\left(k_{t}^{*}, L_{t}^{*}\right)=f\left(k_{t}^{*}, L_{t}^{*}\right)-f(0,0) \geq f_{k}\left(k_{t}^{*}, L_{t}^{*}\right) k_{t}^{*}+f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) L_{t}^{*}
$$

we obtain by using (9):

$$
\sum_{t=T}^{T+\tau} \lambda_{t}^{1} \sum_{i} c_{t}^{* i} \geq \lambda_{T}^{1} f_{k}\left(k_{T}^{*}, L_{T}^{*}\right) k_{T}^{*}-\lambda_{T+\tau}^{1} k_{T+\tau+1}^{*}+\sum_{t=T}^{T+\tau} \lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) L_{t}^{*}
$$

Let $\tau \rightarrow+\infty$. Since $\lambda^{1} \in l^{1}$, and $k_{t}^{*} \leq \max \left\{k_{0}, \bar{k}\right\}, \forall t$, we have

$$
\begin{align*}
\sum_{t=T}^{+\infty} \lambda_{t}^{1} \sum_{i} c_{t}^{* i} & \geq \lambda_{T}^{1} f_{k}\left(k_{T}^{*}, L_{T}^{*}\right) k_{T}^{*}+\sum_{t=T}^{+\infty} \lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) L_{t}^{*} \\
& \geq \sum_{t=T}^{+\infty} \lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) L_{t}^{*}=\sum_{t=T}^{+\infty} \lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right)\left(m-\sum_{i} l_{t}^{* i}\right) \tag{13}
\end{align*}
$$

Hence, for T large enough,

$$
m \sum_{t=T}^{+\infty} \lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) \leq \sum_{t=T}^{+\infty} \lambda_{t}^{1} \sum_{i} c_{t}^{* i}+\sum_{t=T}^{+\infty} \lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) \sum_{i} l_{t}^{* i} \leq \varepsilon
$$

for any η.
2. Obviously:

$$
\begin{align*}
\sum_{0}^{+\infty} \lambda_{t}^{1} \sum_{i} c_{t}^{* i}+\sum_{0}^{+\infty} \lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) \sum_{i} l_{t}^{* i} & \leq M_{1}=\frac{1}{1-\beta} \sum_{i} u^{i}(A, 1) \tag{14}\\
\sum_{t=0}^{+\infty} \lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) & \leq M_{2}=\frac{2}{m} \times \frac{1}{1-\beta} \sum_{i} u^{i}(A, 1)
\end{align*}
$$

Proposition $\mathbf{7}$ Let $k_{0}>0$. Let $\left(\mathbf{k}^{*}, \mathbf{c}^{*}, \mathbf{L}^{*}, \mathbf{l}^{*}\right)$ solve the Pareto problem associated with $\eta \in \Delta$. Take

$$
\begin{aligned}
p_{t}^{*} & =\lambda_{t}^{1}, w_{t}^{*}=\lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) \text { for any } t \\
\text { and } r & =\lambda_{0}^{1}\left[F_{k}\left(k_{0}, 0\right)+1-\delta\right] .
\end{aligned}
$$

Then $\left\{\mathbf{c}^{*}, \mathbf{k}^{*}, \mathbf{L}^{*}, \mathbf{p}^{*}, \mathbf{w}^{*}, r\right\}$ is an equilibrium with transfers.

Proof:

i) We have

$$
\mathbf{c}^{*} \in\left(\ell_{+}^{\infty}\right)^{m}, \mathbf{l}^{*} \in\left(\ell_{+}^{\infty}\right)^{m}, \mathbf{k}^{*} \in \ell_{+}^{\infty}, \mathbf{p}^{*} \in \ell_{+}^{1}, \mathbf{w}^{*} \in \ell_{+}^{1}
$$

From Remark 1 statement $4, \mathbf{p}^{*} \neq \mathbf{0}$, and together with Remark $2, \mathbf{w}^{*} \neq \mathbf{0}$.
ii) We now show that $\left(\mathbf{c}^{* i}, \mathbf{l}^{* i}\right)$ solves the consumer's problem. Let $\left(\mathbf{c}^{i}, \mathbf{l}^{i}\right)$ satisfy

$$
\sum_{t=0}^{\infty} p_{t}^{*} c_{t}^{i}+\sum_{t=0}^{\infty} w_{t}^{*} l_{t}^{i} \leq \sum_{t=0}^{\infty} p_{t}^{*} c_{t}^{* i}+\sum_{t=0}^{\infty} w_{t}^{*} l_{t}^{* i}
$$

By the concavity of u^{i}, we have:

$$
\begin{gathered}
\Delta=\sum_{t=0}^{\infty} \beta_{i}^{t} u^{i}\left(c_{t}^{* i}, l_{t}^{* i}\right)-\sum_{t=0}^{\infty} \beta_{i}^{t} u^{i}\left(c_{t}^{i}, l_{t}^{i}\right) \\
\geq \sum_{t=0}^{\infty} \beta_{i}^{t} u_{c}^{i}\left(c_{t}^{* i}, l_{t}^{* i}\right)\left(c_{t}^{* i}-c_{t}^{i}\right)+\sum_{t=0}^{\infty} \beta_{i}^{t} u_{l}^{i}\left(c_{t}^{* i}, l_{t}^{* i}\right)\left(l_{t}^{* i}-l_{t}^{i}\right) .
\end{gathered}
$$

Combining (3) and (6) yields

$$
\begin{aligned}
\Delta & \geq \sum_{t=0}^{\infty} \frac{\left(\lambda_{t}^{1}-\lambda_{t}^{2 i}\right)}{\eta_{i}}\left(c_{t}^{* i}-c_{t}^{i}\right)+\sum_{t=0}^{\infty} \frac{\left(\lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right)-\lambda_{t}^{4 i}+\lambda_{t}^{5 i}\right)}{\eta_{i}}\left(l_{t}^{* i}-l_{t}^{i}\right) \\
& \geq \sum_{t=0}^{\infty} \frac{\lambda_{t}^{1}}{\eta_{i}}\left(c_{t}^{* i}-c_{t}^{i}\right)+\sum_{t=0}^{\infty} \frac{\lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right)}{\eta_{i}}\left(l_{t}^{* i}-l_{t}^{i}\right)+\sum_{t=0}^{\infty} \frac{\lambda_{t}^{5 i}\left(1-l_{t}^{i}\right)}{\eta_{i}} \\
& \geq \sum_{t=0}^{\infty} \frac{\lambda_{t}^{1}}{\eta_{i}}\left(c_{t}^{* i}-c_{t}^{i}\right)+\sum_{t=0}^{\infty} \frac{\lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right)}{\eta_{i}}\left(l_{t}^{* i}-l_{t}^{i}\right) \\
& =\sum_{t=0}^{\infty} \frac{p_{t}^{*}}{\eta_{i}}\left(c_{t}^{* i}-c_{t}^{i}\right)+\sum_{t=0}^{\infty} \frac{w_{t}^{*}}{\eta_{i}}\left(l_{t}^{* i}-l_{t}^{i}\right) \geq 0
\end{aligned}
$$

This means $\left(\mathbf{c}^{* i}, \mathbf{l}^{* i}\right)$ solves the consumer's problem.
iii) We now show that $\left(\mathbf{k}^{*}, \mathbf{L}^{*}\right)$ is solution to the firm's problem. Since $p_{t}^{*}=\lambda_{t}^{1}, w_{t}^{*}=\lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right)$, we have

$$
\pi^{*}=\sum_{t=0}^{\infty} \lambda_{t}^{1}\left[f\left(k_{t}^{*}, L_{t}^{*}\right)-k_{t+1}^{*}\right]-\sum_{t=0}^{\infty} \lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) L_{t}^{*}-r k_{0}
$$

Let :

$$
\begin{aligned}
\Delta_{T}= & \sum_{t=0}^{T} \lambda_{t}^{1}\left[f\left(k_{t}^{*}, L_{t}^{*}\right)-k_{t+1}^{*}\right]-\sum_{t=0}^{T} \lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) L_{t}^{*}-r k_{0} \\
& -\left(\sum_{t=0}^{T} \lambda_{t}^{1}\left[f\left(k_{t}, L_{t}\right)-k_{t+1}\right]-\sum_{t=0}^{T} \lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) L_{t}-r k_{0}\right)
\end{aligned}
$$

By the concavity of f, we get

$$
\begin{aligned}
\Delta_{T} \geq & \sum_{t=1}^{T} \lambda_{t}^{1} f_{k}\left(k_{t}^{*}, L_{t}^{*}\right)\left(k_{t}^{*}-k_{t}\right)-\sum_{t=0}^{T} \lambda_{t}^{1}\left(k_{t+1}^{*}-k_{t+1}\right) \\
= & {\left[\lambda_{1}^{1} f_{k}\left(k_{1}^{*}, L_{1}^{*}\right)-\lambda_{0}^{1}\right]\left(k_{1}^{*}-k_{1}\right)+\ldots } \\
& +\left[\lambda_{T}^{1} f_{k}\left(k_{T}^{*}, L_{T}^{*}\right)-\lambda_{T-1}^{1}\right]\left(k_{T}^{*}-k_{T}\right)-\lambda_{T}^{1}\left(k_{T+1}^{*}-k_{T+1}\right)
\end{aligned}
$$

By (4) and (9), we have: $\forall t=1,2, \ldots, T$

$$
\begin{aligned}
& {\left[\lambda_{t}^{1} f_{k}\left(k_{t}^{*}, L_{t}^{*}\right)-\lambda_{t-1}^{1}\right]\left(k_{t}^{*}-k_{t}\right)} \\
& =-\lambda_{t}^{3}\left(k_{t}^{*}-k_{t}\right)=\lambda_{t}^{3} k_{t} \geq 0
\end{aligned}
$$

Thus,

$$
\Delta_{T} \geq-\lambda_{T}^{1}\left(k_{T+1}^{*}-k_{T+1}\right)=-\lambda_{T}^{1} k_{T+1}^{*}+\lambda_{T}^{1} k_{T+1} \geq-\lambda_{T}^{1} k_{T+1}^{*}
$$

Since $\lambda^{1} \in l_{+}^{1}, \sup _{T} k_{T+1}^{*}<+\infty$, we have

$$
\lim _{T \rightarrow+\infty} \Delta_{T} \geq \lim _{T \rightarrow+\infty}-\lambda_{T}^{1} k_{T+1}^{*}=0
$$

We have proved that the sequences $\left(\mathbf{k}^{*}, \mathbf{L}^{*}\right)$ maximize the profit of the firm.
Finally, the market is cleared by the strict increasingness of the utility functions.

Let $k_{0}>0$. From Proposition 4, we define the following mapping

$$
\phi_{i}(\eta)=\sum_{t=0}^{\infty} p_{t}^{*}(\eta) c_{t}^{* i}(\eta)+\sum_{t=0}^{\infty} w_{t}^{*}(\eta) l_{t}^{* i}(\eta)-\sum_{t=0}^{\infty} w_{t}^{*}(\eta)-\vartheta^{i} r k_{0}-\alpha^{i} \pi^{*}(\eta)
$$

where

$$
\begin{aligned}
p_{t}^{*} & =\lambda_{t}^{1}, w_{t}^{*}=\lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right), \forall t \\
\pi^{*}(\eta) & =\sum_{t=0}^{\infty} p_{t}^{*}(\eta)\left[f\left(k_{t}^{*}(\eta), L_{t}^{*}(\eta)\right)-k_{t+1}^{*}(\eta)\right]-\sum_{t=0}^{\infty} w_{t}^{*}(\eta) L_{t}^{*}(\eta)-r k_{0}
\end{aligned}
$$

This mapping ϕ_{i} is uniformly bounded (see Proposition 6 , statement 2).
Proposition 8 i) Let $k_{0}>0$. Then for any $\eta \in \Delta, \pi^{*}(\eta) \geq 0$.
ii) If $\eta_{i}=0$ then $\forall t, c_{t}^{* i}=0, l_{t}^{* i}=0$ and $\phi_{i}(\eta)<0$.

Proof: i) Let $\left(k_{0}, 0,0, \ldots\right) \in \Pi\left(k_{0}\right)$. Then

$$
\begin{aligned}
\pi^{*}(\eta) & \geq \lambda_{0}^{1}(\eta)\left[F\left(k_{0}, 0\right)+(1-\delta) k_{0}\right]-r k_{0} \\
& =\lambda_{0}^{1}(\eta)\left[F\left(k_{0}, 0\right)+(1-\delta) k_{0}\right]-\lambda_{0}^{1}(\eta)\left[F_{k}\left(k_{0}, 0\right)+1-\delta\right] k_{0} \\
& \geq 0 .
\end{aligned}
$$

ii) Let $\eta_{i}=0$. From Remark $1, c_{t}^{* i}=l_{t}^{* i}=0, \forall t$. Now, we have

$$
\begin{aligned}
\phi_{i}(\eta) & =\sum_{t=0}^{\infty} p_{t}^{*}(\eta) c_{t}^{* i}(\eta)+\sum_{t=0}^{\infty} w_{t}^{*}(\eta) l_{t}^{* i}(\eta)-\sum_{t=0}^{\infty} w_{t}^{*}(\eta)-\vartheta^{i} r k_{0}-\alpha^{i} \pi^{*}(\eta) \\
& =-\sum_{t=0}^{\infty} w_{t}^{*}(\eta)-\vartheta^{i} r k_{0}-\alpha^{i} \pi^{*}(\eta) \leq-\sum_{t=0}^{\infty} w_{t}^{*}(\eta)<0, \text { since } \mathbf{w}^{*} \in l_{+}^{1} \backslash\{0\} .
\end{aligned}
$$

We can now state our main result.
Theorem 2 Assume U1, U2, U3, F1, F2, F3. Let $k_{0}>0$. Then there exists $\bar{\eta} \in \Delta, \bar{\eta} \gg 0$, such that $\phi_{i}(\bar{\eta})=0, \forall i$. This means there exists a competitive equilibrium.

Proof: We first prove that ϕ_{i} is continuous for any i. Let $\left(\eta^{n}\right) \rightarrow \eta$. Since,

$$
c_{t}^{* i}\left(\eta^{n}\right) \rightarrow c_{t}^{* i}(\eta), l_{t}^{* i}\left(\eta^{n}\right) \rightarrow l_{t}^{* i}(\eta), k_{t}^{*}\left(\eta^{n}\right) \rightarrow k_{t}^{*}(\eta),
$$

and if $\sum_{j} c_{t}^{* j}(\eta)>0$ then $p_{t}^{*}\left(\eta^{n}\right) \rightarrow p_{t}^{*}(\eta), w_{t}^{*}\left(\eta^{n}\right) \rightarrow w_{t}^{*}(\eta)$. It remains to be proven that $p_{t}^{*}\left(\eta^{n}\right) \rightarrow p_{t}^{*}(\eta), w_{t}^{*}\left(\eta^{n}\right) \rightarrow w_{t}^{*}(\eta)$ even $\sum_{j} c_{t}^{* j}(\eta)=0$. Let $\mathcal{T}=\{t$: $\left.\sum_{j} c_{t}^{* j}(\eta)=0\right\}$. From the proof in Proposition 6, there exists M such that for any $\eta \in \Delta$,

$$
\sum_{t=0}^{+\infty} w_{t}^{*}(\eta)=\sum_{t=0}^{+\infty} \lambda^{1}{ }_{t}(\eta) f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) \leq M
$$

and for any $\varepsilon>0$, there exists T_{0} such that, for any $\eta \in \Delta$, for any $T \geq T_{0}$,

$$
\sum_{T}^{+\infty} w_{t}^{*}(\eta)=\sum_{T}^{+\infty} \lambda^{1}{ }_{t}(\eta) f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) \leq \varepsilon
$$

These inequalities show that $\left\{w^{*}\left(\eta^{n}\right)\right\}$ is in a relatively compact set of ℓ^{1}. We can assume that it converges to $\left(\bar{w}_{t}\right) \in \ell^{1}$. From (12), for $t \in \mathcal{T}, \lambda_{t}^{1}\left(\eta^{n}\right) \rightarrow \bar{\lambda}_{t}^{1}=$ $\frac{\bar{w}_{t}}{f_{L}\left(k_{t}^{*}, m\right)}$.

When $\sum_{j} c_{0}^{* j}(\eta)>0$, consider T, the first date where $\sum_{j} c_{T}^{* j}(\eta)=0$. For $t=0, \ldots, T-1$, we have $\lambda_{t}^{1}\left(\eta^{n}\right) \rightarrow \lambda_{t}^{1}(\eta)$. Since $\lambda_{T}^{1}\left(\eta^{n}\right) f_{L}\left(k_{T}^{*}\left(\eta^{n}\right), L_{t}^{*}\left(\eta^{n}\right)\right)=$ $\lambda_{T-1}^{1}\left(\eta^{n}\right)$, we have $\bar{\lambda}_{t}^{1} f_{L}\left(k_{T}^{*}(\eta), m\right)=\lambda_{T-1}^{1}(\eta)$. ¿From Proposition 4, and relation (12), we have $\bar{\lambda}_{T}^{1}=\lambda_{T}^{1}(\eta)$. In other words, $\lambda_{T}^{1}\left(\eta^{n}\right) \rightarrow \lambda_{T}^{1}(\eta)$. By induction, $\lambda_{t}^{1}\left(\eta^{n}\right) \rightarrow \lambda_{t}^{1}(\eta)$ for any $t \geq T$.

Use the same arguments to prove that $\lambda_{t}^{1}\left(\eta^{n}\right) \rightarrow \lambda_{t}^{1}(\eta)$ for any t, when $\sum_{j} c_{0}^{* j}(\eta)=0$.

From these results we get $\bar{w}_{t}=w_{t}^{*}(\eta)$ for any t.
It follows from (13) and (14) in Proposition 6 that for any $\eta \in \Delta$, any T

$$
\frac{\beta^{T}}{1-\beta} \sum_{i} u^{i}(A, 1) \geq \sum_{t=T}^{+\infty} \lambda_{t}^{1} \sum_{i} c_{t}^{* i} \geq \sum_{T}^{+\infty} \lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) L_{t}^{*}
$$

or

$$
\begin{equation*}
\frac{2 \beta^{T}}{1-\beta} \sum_{i} u^{i}(A, 1) \geq \sum_{t=T}^{+\infty} \lambda_{t}^{1} \sum_{i}\left(c_{t}^{* i}+f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) l_{t}^{* i}\right) \geq m \sum_{T}^{+\infty} \lambda_{t}^{1} f_{L}\left(k_{t}^{*}, L_{t}^{*}\right) \tag{15}
\end{equation*}
$$

Let $\varepsilon>0$. From inequality (15), there exists T such that for any n we have:

$$
\begin{aligned}
& \mid \sum_{t \geq T} p_{t}^{*}\left(\eta^{n}\right) c_{t}^{* i}\left(\eta^{n}\right)+\sum_{t \geq T} w_{t}^{*}\left(\eta^{n}\right) l_{t}^{* i}\left(\eta^{n}\right) \\
& -\sum_{t \geq T} w_{t}^{*}\left(\eta^{n}\right)-\vartheta^{i} r k_{0}-\alpha^{i} \sum_{t \geq T} p_{t}^{*}\left(\eta^{n}\right) \sum_{i} c_{t}^{* i}\left(\eta^{n}\right) \\
& -\sum_{t \geq T} w_{t}^{*}\left(\eta^{n}\right)\left(m-\sum_{i} l_{t}^{* i}\left(\eta^{n}\right)\right)-r k_{0} \mid \leq \varepsilon
\end{aligned}
$$

and

$$
\begin{aligned}
& \mid \sum_{t \geq T} p_{t}^{*}(\eta) c_{t}^{* i}(\eta)+\sum_{t \geq T} w_{t}^{*}(\eta) l_{t}^{* i}(\eta) \\
& -\sum_{t \geq T} w^{*}{ }_{t}(\eta)-\vartheta^{i} r^{*}(\eta) k_{0}-\alpha^{i} \sum_{t \geq T} p^{*}{ }_{t}(\eta) \sum_{i} c_{t}^{* i}(\eta) \\
& -\sum_{t \geq T} w^{*}{ }_{t}(\eta)\left(m-\sum_{i} l_{t}^{* i}(\eta)\right)-r^{*}(\eta) k_{0} \mid \leq \varepsilon
\end{aligned}
$$

Consider $t \in\{0, \ldots, T-1\}$. One has: $p_{t}^{*}\left(\eta^{n}\right) \rightarrow p^{*}{ }_{t}(\eta), w_{t}^{*}\left(\eta^{n}\right) \rightarrow w_{t}^{*}(\eta)$, $c_{t}^{* i}\left(\eta^{n}\right) \rightarrow c_{t}^{* i}(\eta), l_{t}^{* i}\left(\eta^{n}\right) \rightarrow l_{t}^{* i}(\eta), k_{t}^{*}\left(\eta^{n}\right) \rightarrow k_{t}^{*}(\eta)$. Thus, for n large enough, we have $\left|\phi_{i}\left(\eta^{n}\right)-\phi_{i}(\eta)\right| \leq 3 \varepsilon$. The proof that ϕ_{i} is continuous is complete.

Observe that $\sum_{i} \phi_{i}(\eta)=0$ for any η by Walras Law. Let us define $\Psi: \Delta \rightarrow \Delta$, $\Psi(\eta)=\left(\Psi_{1}(\eta), \Psi_{2}(\eta), \ldots, \Psi_{m}(\eta)\right)$ where $\Psi_{i}(\eta)$ is given by

$$
\Psi_{i}(\eta)=\frac{\eta_{i}+\phi_{i}^{\prime}(\eta)}{1+\sum_{i=1}^{m} \phi_{i}^{\prime}(\eta)}
$$

with $\phi_{i}^{\prime}(\eta)=-\phi_{i}(\eta)$ if $\phi_{i}(\eta)<0$, and $\phi_{i}^{\prime}(\eta)=0$ if $\phi_{i}(\eta) \geq 0 . \Psi$ is a continuous mapping from the simplex into itself. By the Brouwer fixed point theorem, there exists $\bar{\eta} \in \Delta$ such that $\Psi(\bar{\eta})=\bar{\eta}$. We have

$$
\begin{equation*}
\bar{\eta}_{i}=\frac{\bar{\lambda}_{i}+\phi_{i}^{\prime}(\bar{\eta})}{1+\sum_{i=1}^{m} \phi_{i}^{\prime}(\bar{\eta})} \Leftrightarrow \bar{\eta}_{i} \sum_{i=1}^{m} \phi_{i}^{\prime}(\bar{\eta})=\phi_{i}^{\prime}(\bar{\eta}) \tag{16}
\end{equation*}
$$

If $\overline{\eta_{i}}=0$, Proposition 8 (ii) implies that $\phi_{i}\left(\bar{\eta}_{i}\right)<0$ and $\phi_{i}^{\prime}(\bar{\eta})>0$ - a contradiction with (16). Thus, $\bar{\eta}_{i}>0, \forall i$. If $\sum_{i=1}^{m} \phi_{i}^{\prime}(\bar{\eta})>0$, then $\phi_{i}^{\prime}(\bar{\eta})>0, \forall i$. From the definition of $\phi_{i}^{\prime}(\eta)$ this implies $\phi_{i}(\eta)<0, \forall i$. But this contradicts the Walras Law which says $\sum_{i=1}^{m} \phi_{i}(\bar{\eta})=0$. Thus, $\sum_{i=1}^{m} \phi_{i}^{\prime}(\bar{\eta})=0$ which implies $\phi_{i}^{\prime}(\bar{\eta})=0, \forall i$. But in this case we have $\phi_{i}(\bar{\eta}) \geq 0, \forall i$. From the Walras Law we have $\phi_{i}(\bar{\eta})=0$, $\forall i$.

Remark 3 Here, existence of equilibrium is obtained without assuming, as in Bewley (1972), that any consumer i has at each t an endowment $\omega_{t}^{i} \geq 0$ which satisfies $\sum_{i=1}^{m} \omega_{t}^{i} \in$ int ℓ_{+}^{∞}

4 Appendix A

Proposition 9 Assume $k_{0}>0$. If $\left(\bar{c}^{i}, \bar{l}^{i}\right)$ is a Pareto optimum if and only if there exists $\eta \in \Delta$ such that $\left(\bar{c}^{i}, \bar{l}^{i}\right)$ solves the problem $\max \sum_{i} \eta_{i} \sum_{t=0}^{+\infty} \beta_{i}^{t} u^{i}\left(c_{l}^{i}, l_{t}^{i}\right)$ in the feasible set from k_{0}.

Proof: Let $U^{i}\left(c^{i}, l^{i}\right)=\sum_{t=0}^{+\infty} \beta_{i}^{t} u^{i}\left(c_{l}^{i}, l_{t}^{i}\right)$. Let $\Sigma\left(k_{0}\right)$ denote the feasible set of the consumption and leisure sequences from $k_{0} . \Sigma\left(k_{0}\right)$ is compact, convex for
the product topology. Let U be

$$
U=\left\{z \in \mathbb{R}_{+}^{m}: \exists\left(c^{i}, l^{i}\right) \in \Sigma\left(k_{0}\right), \forall i, z_{i} \leq U^{i}\left(c^{i}, l^{i}\right)\right\}
$$

Since the functions u^{i}, F are continuous in the positive orthants, the functions U^{i} are continuous on the feasible set for the product topology. Therefore, the set U is convex, compact in \mathbb{R}_{+}^{m}. Let $\left(\bar{c}^{i}, \bar{l}^{i}\right)$ be a Pareto optimum allocation, $\zeta^{i}=U^{i}\left(\bar{c}^{i}, \bar{l}^{i}\right)$ and $B=\left\{\left(\zeta^{i}\right)+\mathbb{R}_{++}^{m}\right\}$. We have $B \cap U=\emptyset$. From the Separation Theorem, there exists $\left(\eta_{1}, \ldots, \eta_{m}\right) \in \mathbb{R}^{m} \backslash\{0\}$ such that

$$
\eta_{1} z_{1}+\ldots+\eta_{m} z_{m} \leq \eta_{1}\left(\zeta_{1}+r_{1}\right)+\ldots+\eta_{m}\left(\zeta_{m}+r_{m}\right)
$$

for any $\left(z_{i}\right) \in U$, any $r=\left(r_{1}, \ldots, r_{m}\right) \gg 0$. Take $z_{i}=\zeta_{i}, \forall i, r_{i}=1$ and let $r_{j}(j \neq i)$ go to zero. We get $\eta_{i} \geq 0$. That means $\eta \in \mathbb{R}_{+}^{m} \backslash\{0\}$. We can normalize $\eta \in \Delta$. Now, if $\left(c^{i}, l^{i}\right)$ is feasible then

$$
\sum_{i} \eta_{i} U^{i}\left(c^{i}, l^{i}\right) \leq \sum_{i} \eta_{i} U^{i}\left(\bar{c}^{i}, \bar{l}^{i}\right)+\eta_{1} r_{1}+\ldots+\eta_{m} r_{m}
$$

for $r \gg 0$. Letting r go to zero, we get

$$
\sum_{i} \eta_{i} U^{i}\left(c^{i}, l^{i}\right) \leq \sum_{i} \eta_{i} U^{i}\left(\bar{c}^{i}, \bar{l}^{i}\right)
$$

Conversely, if $\left(\bar{c}^{i}, \bar{l}^{i}\right)$ solves

$$
\max \sum_{i=1}^{m} \eta_{i} \sum_{t=0}^{\infty} \beta_{i}^{t} u^{i}\left(c_{t}^{i}, l_{t}^{i}\right)
$$

in the feasible set from k_{0}, it is only a weak Pareto optimum. If $\eta \gg 0$ or if the solution is unique for any $\eta \in \Delta$, which is the case in our model, then it is a Pareto optimum.

References

[1] Aliprantis, Charalambos D., Donald J. Brown, and Owen Burkinshaw, (1990), Existence and Optimality of Competitive Equilibria. Heidelberg: Springer.
[2] Becker, Robert A. (1980), On the long-run steady state in a simple dynamic model of equilibrium with heterogeneous households, Quarterly Journal of Economics 95, 375-382.
[3] Berge, Claude (1959) Espaces Topologiques. Paris: Dunod. English translation: Topological Spaces, Ediburgh London: Oliver and Boyd (1963).
[4] Bewley, Truman F. (1972), Existence of equilibria in economies with infinitely many commodities, Journal of Economic Theory 4, 514-540.
[5] Bewley, Truman F. (1982), An integration of equilibrium theory and turpike theory, Journal of Mathematical Economics 10, 233-267.
[6] Dana, Rose-Anne and Cuong Le Van (1991), Equilibria of a stationary economy with recursive preferences, Journal of Optimization Theory and Applications 71, 289-313.
[7] Dechert, W. Davis (1982), Lagrange multipliers in infinite horizon discrete time optimal control models, Journal of Mathematical Economics 9, 285302.
[8] Florenzano, Monique and Cuong Le Van (2001), Finite Dimensional Convexity and Optimization. Heidelberg: Springer-Verlag.
[9] Le Van, Cuong and Rose-Anne Dana (2003), Dynamic Programming in Economics. Dordrecht: Kluwer Academic Publishers.
[10] Le Van, Cuong, Manh-Hung Nguyen, and Yiannis Vailakis, (2007), Equilibrium dynamics in an aggregative model of capical accumulation with heterogeneous agents and elastic labor, Journal of Mathematical Economics 43, 287-317.
[11] Le Van, Cuong and Cagri Saglam (2004), Optimal growth models and the Lagrange multiplier, Journal of Mathematical Economics 40, 393-410.
[12] Le Van, Cuong and Yiannis Vailakis (2003), Existence of a competitive equilibrium in a one sector growth model with heterogeneous agents and irreversible investment, Economic Theory 22, 743-771.
[13] Le Van, Cuong and Yiannis Vailakis (2004), Existence of competitive equilibrium in a single-sector growth model with elastic labor, Cahiers de la MSE, N ${ }^{0}$ 2004-123.
[14] Negishi, Takashi (1960), Welfare economics and existence of an equilibrium for a competitive economy, Metroeconomica 12, 92-97.
[15] Peleg, Bezalel and Menahem E. Yaari (1970), Markets with countably many commodities, International Economic Review 11, 369-377.
[16] Ramsey, Frank P. (1928), A mathematical theory of saving, Economic Journal 38, 543-559.

[^0]: The DEPOCEN WORKING PAPER SERIES disseminates research findings and promotes scholar exchanges in all branches of economic studies, with a special emphasis on Vietnam. The views and interpretations expressed in the paper are those of the author(s) and do not necessarily represent the views and policies of the DEPOCEN or its Management Board. The DEPOCEN does not guarantee the accuracy of findings, interpretations, and data associated with the paper, and accepts no responsibility whatsoever for any consequences of their use. The author(s) remains the copyright owner.

[^1]: *We would like to thank the anonymous referee for the helpful comments.
 ${ }^{\dagger}$ Department of Economics, National University of Singapore, AS2, Level 6, 1 Arts Link, Singapore 117570, Email: goenka@nus.edu.sg
 ${ }^{\ddagger}$ Centre d’Economie de la Sorbonne, Maison des Scieces Economiques, 106-112 boulevard de l'Hôpital, 75013 Paris, France. Email: levan@univ-paris1.fr
 §VanXuan Center of Research in Economics, Management, and Environment
 ${ }^{\text {ITSE }} 21$ allée de Brienne, 31000 Toulouse, France. Email: mhnguyen@toulouse.inra.fr

[^2]: ${ }^{1}$ They assumed $\frac{u(\epsilon, \epsilon)}{\epsilon} \rightarrow+\infty$ as $\epsilon \rightarrow 0$ for showing $c_{t}>0, l_{t}>0$ and $\frac{u_{c c}}{u_{c}} \leq \frac{u_{c l}}{u_{l}}$ for the proof of $k_{t}>0$ for all t.

[^3]: ${ }^{2}$ Le Van, et al. (2007) assume that the cross-partial derivative $u_{c l}^{i}$ has constant sign, $u_{c}^{i}(x, x)$ and $u_{l}^{i}(x, x)$ are non-increasing in x, the production function F is homogenous of degree $\alpha \leq 1$ and $F_{k L} \geq 0$ (Assumptions U4, F4, U5, F5).

[^4]: ${ }^{3}$ We relax some important assumptions in the literature. For example, Bewley (1972) assumes that the production set is a convex cone (Theorem 3, page 525). He also assumes the strictly positiveness of derivatives of utility functions on \mathbb{R}_{+}^{L} (Bewley (1982), strictly monotonicity assumption, page 240). In our model, the utility functions may not be differentiable in $\mathbb{R}_{+} \times[0,1]$ (only differentiable on $\mathbb{R}_{+} \times(0,1)$) from which many difficulties arise when we deal with boundary points. A function that satisfies these properties is the Cobb-Douglas function $F(x, y)=x^{\alpha} y^{1-\alpha}, \alpha \in(0,1)$.

[^5]: ${ }^{4}$ We show in Appendix A that with every Pareto optima of this economy there exists a corresponding vector of weights η.

[^6]: ${ }^{5}$ For a concave function f defined on $\mathbb{R}^{n}, \partial f(x)$ denotes the subdifferential of f at x. We have to write the first-order conditions by the subgradient set since at the point $(0,0)$, the functions u^{i} and f are not assumed to be differentiable.
 ${ }^{6}$ Assumption $f_{k}(0,1)>1$ is equivalent to the Adequacy Assumption in Bewley (1972), see Le Van and Dana (2003) Remark 6.1.1. This assumption is crucial to have equilibrium prices in ℓ_{+}^{1} since it implies that the production set has an interior point. Subsequently, one can use a separation theorem in the infinite dimensional space to derive Lagrange multipliers.

