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1. Introduction 
2. Rethinking Efficient Markets 

 
2.1  Rational Expectations and Pricing Models 

The Standard Financial Theory apparently relies on arbitrage mechanisms to set prices right. 
According to Modigliani-Miller Theorem (MM, 1958), while searching for the least expensive 
way to invest, rational investors leave no room for the firm to manipulate its value. The crux of 
this assertion is that, if there is a cheaper way to earn the same cash income in future, rational 
investors should abandon the more expensive financial instruments used by the firm and go for 
the cheaper ones, clearing any pricing discrepancies among assets or securities. It turns out that, 
such arbitrage arguments form the crucial logic in financial economics. Namely, The Efficient 
Market Hypothesis (EMH) which says: a security’s price reflects its “fundamental value”.  

To see this, let us emphasize that a corollary of MM Theorems is this: A firm can create value 
only by proposing a risky project whose returns are sufficiently high to be attractive to investors. 
But risks and returns can only be realized in future. Thus, one can imagine that both the firm and 
investors, who buy and sell the firm’s shares, interact in a finite horizon game. At each stage of 
the game, news, including those about the firm’s projects, arrives to the market. Such flows of 
news, running from a remote past, form the information set of the current stage, at which 
investors update their beliefs about the distribution of the firm’s future returns, consistent with 
Bayes’ rule. Investors then act upon their beliefs. That is, they abandon any security, whose 
expected returns cannot meet or beat expected losses, while buying it more if the reverse holds 
true. Two important facts immediately follow: First, rational actions by investors tend to drive 
the security’s price toward its fundamental value that confirms investors’ beliefs. Second, in 
equilibrium, no security can yield excess risk-adjusted average returns, or average returns greater 
than are warranted for its risk. As already said, the first statement is EMH. The second one is 
known as Capital Asset Pricing Model (CAPM)2. We then see all three building blocks of the 
Standard Financial Theory, MM, EMH, and CAPM in one coherent setting.  

A key telnet in efficient market arguments is the concept of rational expectation equilibrium or 
REE (Sargent, 1993)3. It states that individuals’ actions are rational given beliefs, and beliefs are 

                                                            
1 VNU at HCMC. Email: lehnhat@gmail.com. Criticisms, comments are welcome! 
2 The model was introduced by Treynor (1961, 1962), Sharpe (1964), Lintner (1965) and Mossin (1966) 
independently, building on the earlier work of Markowitz (1952) and Tobin (1958).  
3  REE corresponds to Weak Perfect Baysien Equilibrium or weak PBE (Myerson, 1991) in dynamic games. 



consistent given facts. That is, the distribution agents use to forecast future realizations of returns 
is indeed the distribution that those realizations are drawn from. 

When matching the theory with the real world, this consistency condition proves to be too 
demanding. Agents may not act in a manner consistent with REE. For instance, if share prices 
are an accurate estimate of value, it is appealing to use share price changes as an indicator to 
determine management compensation. But simply tying management pay to share -price 
performance would encourage managers inappropriately shift resources away from investments 
that ensure the firm’s long-term profits. Such an incentive problem leaves open the possibilities 
that some investors may make mistakes in choosing their strategies. Even though, they still act 
rationally, given their beliefs, and these beliefs are still justified given facts. But the facts they 
used to form their beliefs are driven by moral hazard4.    

Thus, a share’s price could deviate from its fundamental value. It is required then there are some 
effective institutions that evolve to mitigate incentive problems and to allow investors to get 
better access to crucial information over time. Meanwhile, irrational actions are unavoidable. 

Suppose irrational actions, either by moral hazard or by misperceptions, appear with some 
probability, randomly tipping a security’s price away from its value.  According to Friedman 
(1953), such a pricing error will create an opportunity sensed by rational investors who will snap 
up the opportunity, thereby immediately correcting the mispricing. In reality, this price discovery 
process may take a few minutes, days, or even months, causing volatility clustering of stock 
prices, a phenomenon that gives birth to General Autoregressive Conditionally Heteroscedastic 
or GARCH family (Engle, 2004).  The idea here is price shocks may be large at first, but they 
will gradually fade out, as sophisticated investors sooner or later will take advantage of pricing 
errors, driving share prices to the level consistent with CAPM. The concept of REE now appears 
to be too weak to characterize how market prices evolve. One needs to relax the consistency 
condition of REE. It now requires only that, there exists a sequence of actions (corresponding to 
investors’ choices of portfolio), that are rational given investors’ beliefs, and their beliefs are 
justified by some facts in which, with some small probability, they make mistakes in choosing 
their investment strategies. However, when time unfolds, this sequence will find its way to the 
state of REE, driving share prices to the level consistent with EMH. This Sequential Equilibrium 
concept is introduced by Kreps and Wilson (1982)5. It provides a theoretical basis for most 
pricing models.     

                                                            
4 We cast doubt on the strong form of EMH, should bounded rationality or asymmetry of information be in presence.  
5 By definition, a strategy profile and system of beliefs ),( μσ is a sequential equilibrium of a dynamic game, if it 
has the following properties: (i) Strategy profile σ  is sequentially rational given belief systemμ . (ii) There exists a 

sequence of completely mixed strategies: ,}{ 1
∞
=k

kσ , with σσ =∞→
k

klim  , such that μμ =→∞
k

klim , where 
kμ denotes the beliefs derived from strategy profile kσ , using Bayes’ rule (Mas-Colell, Whinston and Green, Ch. 9, 

1995). 



 

2.2 A Learning Game Form of Efficient Markets 

So far, pro- efficient-market arguments simply stay mute on the risks that rational investors or 
arbitragers may incur, when they attempt to exploit pricing errors. In reality, those risks can be 
large, so that strategies designed to correct mispricing may be rendered unattractive, leaving the 
pricing error remained. But then, the concepts of Sequential Rationality or Sequential 
Equilibrium could come under criticisms, that they no longer fully fit real world situations. Once 
again, we need to refine the concept of equilibrium, where agents or investors are not fully 
rational. They obviously do not devoid of rationality. But with some probability, they may make 
mistakes. And such mistakes can have a substantial and long-lived impact on prices.  
 
Toward this end, we first mention the two most noticeable risks that arbitragers may incur. The 
first one is Fundamental Risk. If it is systematic, arbitragers can take advantage of pricing errors. 
But it comes at the cost of reducing the diversification of their portfolio. The second one is Noise 
Trader Risk. If it is related to a self-fulfilling misperception, it can force arbitrageurs to liquidate 
their positions early, bringing them potentially steep losses6. 
 
In facing those risks, an individual arbitrager faces yet another type of risk, that Abreu and 
Brunnermeier (2002) label synchronization risk. The fact is that the elimination of the mispricing 
now would require the participation of a sufficiently large number of separate arbitrageurs. 
Without knowing what others will be going to do, the arbitrageur may hesitate to exploit the 
mispricing because s/he does not know for sure how many other arbitrageurs have heard about 
the opportunity. Therefore s/he does not know for sure the best response: to wait for prices to 
revert to correct values or to correct the mispricing immediately. 
 
Conversely, De Long et al. (1990b) consider the case, whereby an arbitrager has come to believe 
that a sizable fraction of noise traders keep pushing an asset’s price above fundamental value. 
Acting rationally on that belief, the arbitrager will not sell or short the asset. Rather, s/he buy it, 
knowing that the earlier price rise will attract more feedback traders next period by contagion, 
leading to still high  prices, at which point the arbitrageur can exit at a profit. 
 
The situations mentioned above are just some possible states of a coordination game, in which, 
investors’ attitudes toward risks may affect the outcome of the game. We wonder then, whether 
EMH is still valid or whether pricing errors still remain unchallenged.  
 
To answer this question, let us construct a coordination game, based on the stories discussed 
above. For the sake of concreteness, we suppose there are two classes of investors. The first one 
is the class of professional agents, who are assumed to be able to get access to best available 
information and use sophisticated tools to make reasonable forecasts. The second one is the 
public. The key assumption here is, with some probability, both sides can make mistakes. 
Assume further that, at the current period, an arbitrager is drawn at random from the class of 
sophisticated investors. S/he decides whether to take advantage of the mispricing that s/he has 

                                                            
6 Noise trader risk is introduced by De Long et al. (1990a) and studied further by Shleifer and Vishny (1997). 



sensed, or conversely, to act selectively, meaning to wait until the share’s price is about to revert 
to its value or to “follow the herd”. Either way, the selective action exacerbates the mispricing.  
 
Without loss, we assume the following payoffs:  
 
 

The Mispricing Game 
  
            Individual Investor: 
Professional Agent: 

          Act rationally        Act Heuristically 

Act consistently with CAPM ),( RR  ),( γϕ −−  
Exacerbate the mispricing ),( ϕγ −−  ),( rr  
 
 
Here, payoffs include: expected returns consistent with CAPM )(R ; expected returns, when the 
mispricing remains, )(r ; expected losses, associated with individual actions in correcting the 
mispricing )(ϕ ; and expected losses of making mistakes )(γ . In line with CAPM, rationality 
yields the Pareto efficiency: rR > .  
 
The question being asked is whether the arbitrager will take advantage of the mispricing or 
exacerbate it. As already suggested, the answer lies in the risk the arbitrager faces. If ϕ is very 
large, guessing many other arbitragers will exploit this mispricing opportunity is very risky, 
because the arbitrager suffers large losses, if s/he is wrong. It sounds like an echo of Abreu-
Brunnermeier’s synchronization risk, but it comes from a different perspective. Suppose either 
noise trader risk or fundamental risk is looming large, making ϕ  very large. In this case, 
Exacerbate is the risk dominant strategy for the arbitrager. S/he will take it, expecting that 
heuristically feedback traders will push the mispricing far and further from its value (De Long et 
al, 1990b). The mispricing remains as the Risk Dominant Equilibrium (Harsanyi-Selten, 1988). 
Conversely, if ϕ is relatively small, agents will learn to act in a manner consistent with CAPM. 
Thus, the share’s price can never be too far out of line, so the state consistent with EMH will 
emerge and dominate the market.   
 
The next question then is how far a stock’s price may deviate from its value, if ϕ is large; and 
how close it may converge to its fundamental value, if ϕ is small?  
 
To answer this question, we first take a notice that, when ϕ is large, the risk dominant strategy 
for individuals is not necessarily a risk dominant strategy for the whole society. If pricing errors 
remain unchecked, but exacerbated by feedback investors; inefficient capital allocation that 
continues long enough may shift the economy into macro imbalances. Mounting sovereign debt, 
unexpected inflation and crises can be the results, as seen in Latin America in 1970s. Those 
costly experiences gave rise to the formation of institutions that aim to coordinate expectations 
and enforce incentives of arbitragers in order to combat pricing errors and to reduce information 
friction. Surprisingly, in the presence of such expectation-stabilizing institutions, the low 



equilibrium of the mispricing game will never be reached. Otherwise, the economy will be prone 
to chronic crises.  
 
Similar arguments can be applied for the case, when ϕ is small. The closer individuals reach the 
ideal state of full rationality, the harder it is for them to face cognitive limitations of their own 
minds. Hence, the more likely they can make errors or engage in heuristic actions (Herbert 
Simon). Some forms of institutions then must be designed to push individuals to the frontier of 
their innovative abilities, while preventing them from crossing the line imposed by bounded 
rationality. Silicon Valley may still stand as the unique example of such market governance 
institutions.   
 
Proposition 1: In the presence of mechanisms designed to enhance efficient markets, a mixed 
strategy close to one of the pure equilibria will emerge.  
 
Corollary 1: Letλ be the probability of playing the action consistent with CAPM in the mixed 
strategy. The closer the probability λ to 1, the more accurate a stock’s price reflects its value. 
And the closer the probability λ to 0, the greater the stock’s price deviate from its value.  
 
We shall call λ the effective rate of efficient markets, while )1( λ− the hazardous rate of making 
pricing errors that cannot be eliminated by any market-enhancing institution that has come to the 
being through evolution. The mixed strategy implies the society accept some irrational actions 
that professional agents may make, while playing the role model. By contagion, their degree of 
rationality reflects that of the society, even though imperfectly. If the effective rate is high, we 
say the economy has a strong foundation and its growth is sustained. If this rate is low or the 
hazardous rate is high, we say the economy has a weak foundation and is prone to crises.    
 
Proof of Proposition 1: Without loss, let us assume, initially ϕ is large, such that, the low 
equilibrium is risk dominant. If mispricing remains unchecked, the economy is at risks for 
heading into crises. Thus, the best response by a third party, that is, by the agent is mandated to 
protect the society’s wellbeing, is to suppress any mispricing from early stages; not to allow it to 
mutate into a big chaos. For example, if there are some warning signs of housing bubble, 
tightening monetary policy must be imposed and financial institutions doing business in the real 
estate sector must be carefully regulated toward safety. Without going into details, we suppose 
that, the best response by the third party aims at altering the structure of the game in a way that 
coordinates individuals’ actions to combat the mispricing.  In particular, it reduces the risk an 
individual faces when combating the mispricing, ϕ , and increases the risk s/he incurs if 
exacerbating it, γ . We shall say the third party’s best response is effective, if it produces a finite 
structural change: *ϕϕ →k ; ,*γγ →k and .,..,2,1,, 11 Kkkkkk =>< ++ γγϕϕ  Here, 00 ,γϕ are the 
initial values of the payoffs, whereas *

*,γϕ are the lowest value of ϕ  and the highest value of γ , 
respectively, that the society can construct through coordination.  Further, and this is key, at the 
end of the structural change, the risk factors also change in a way that the high equilibrium now 
becomes the risk dominant equilibrium.  
 
If time is left to unfold, the fraction of investors, who act in a manner consistent with CAPM will 
increase and eventually reach the threshold, λ . However, if this fraction increases further and 



beyond the threshold, λ , the parameter ϕ starts to rise, whereas γ starts to fall again. It is 
because the situation has become too complex to be handled optimally through coordination. 
Most market actors reach to the point where they strictly face cognitive limitations of their own 
minds, when processing information and making decisions. Again, the economy faces the risk of 
a suddenly jump back to the low equilibrium. A third party’s best response, as seen in Silicon 
Valley, is to rein in this tendency, detecting and eliminating any potential error that may mutate 
into a large threat. This action is a form of screening mechanisms: Third parties, the capital 
firms, intentionally force the rate of rationally promising projects below the threshold, λ . But 
when they act in that manner, the transition toward the high equilibrium is interrupted and the 
evolution has to start all over again to bring the process closer to λ . Given that, the individual’s 
best response is to act in a manner consistent with CAPM; but with the hazardous rate, )1( λ− , 
s/he may still make a mistake due to bounded rationality or asymmetry of information7.  
 
Finally, when a third party, either in public or in private sectors is inefficient, it cannot bring ϕ  
down and γ up from any initial state of the economy, such that, the hazardous rate, )1( λ− , is too 
high for the economy to maintain a sustained growth path. Like many Latin American countries 
in 1970s, this economy exhibits what would appear to be unwillingness to create expectation-
stabilizing institutions, with consequences of considerable uncertainty (Arrow, 1992) □        
  
 

3. Forming Beliefs 
 
3.1 The Adaptive Expectation Model 

The Proposition1 gives us only a partial support for EMH. Although investors tend to behave 
consistent with CAPM, mispricing still remains (Milgrom, Ch. 12, 1992). And its size is 
proportional to the hazardous rate, )1( λ− , which in turn depends on the risk structure investors 
face when they try to coordinate their strategies. In the simplest form, the mixed strategy 
equilibrium of the mispricing game can be embedded in a “pricing model” as follows: 

)()1( 11 −− −+−+= ttttt mpp λεελβλ         (1) 

Here, tp is the change in price from one day to the next. On the right hand side, the first element, 

1−tp , represents the knowledge gained from processing all available information which has been 

incorporated into yesterday price change. The second element, tm , is the current market 
momentum, either a bull or bear market, that has not been analyzed. Yet, it does affect market’s 

                                                            
7 Here we adopt the adaptive learning framework introduced by Young (1994). By construction, we have 
heterogeneity in payoffs, such that the absorbing state associated with the high equilibrium has the minimum 
stochastic potential, so long as the probability of individuals playing the strategy consistent with CAPM is still 
smaller than λ . Thus, the process tends to converge to this state, but it will be reverted, whenever the probability 
surpassesλ . For that reason, neither high equilibrium, nor the low one will be reached. Instead, the process 
frequently gets closer to the mixed Nash equilibrium, even though never lands on it.               



expectation about how today price is going to vary. The third element, is MA(1) form of 
disturbances, where tε  is assumed to be a white noise. Specification (1) implies that the full 
effect of any shock on a share’s price will not be felt for sometime thereafter.  

Koyck (1954) names equation (1) the Adaptive Expectation model. It consists of two elements: 

First, the regression equation: ttt mp εβ +=
^

, it says investors should react, if rational forecasts 

indicate mispricing, denoted by tm
^

. Namely, they should sell over-priced stocks, and buy under-
priced ones. Second, as shown in the mispricing game, with probability )1( λ− , investors may 
make mistakes in forecasts or they just “follow the herd”. Stated differently, with probability 

)1( λ− , the rational judgment on mispricing is revised by the current observation of market 

momentum, without investors having time to think about it: .)1(1

^^

ttt mmm λλ −+= −  This is 
nothing but the mixed strategy equilibrium of the mispricing game. We shall delay any further 
specification of the model, until we gain a deeper understanding about the nature of market 
momentum, tm . For now, we focus on some insights on price volatility that can be drawn from 
this model.      

 

3.2 Volatility Puzzle: 

In the Adaptive Expectation model, the mixed strategy equilibrium represents the weighted 
average of real investors’ expectations. If the degree of rationality, λ , gets closer to 1, the model 
(1) converges to a Random Walk model or EMH8. Whereas, if λ gets closer to zero, the model 
(1) becomes ttt mp εβ += , which characterizes herding behavior. Since market momentum itself 
is a stochastic process, it means the weighted average will be more volatile than is justified by 
changes in fundamentals, (measured by the standard deviation of tε ). Further, since the 

hazardous rate )1( λ− is strictly greater than zero, one would expect volatility clustering. In some 
periods, markets are relatively steady - a characteristic of efficient markets. In other periods, bull 
or bear markets have prevailed.  Nevertheless, in an economy with a strong foundation, random 
shocks should never be able to mutate into a large threat that can tip the economy into crisis. Yet 
when looking at statistics, something really puzzles us. Nothing seems to confirm our guesses.    

                                                            

8 When  1=λ , we then have : ,
^

ttt mp εβ += where 1

^

−= tt pm  by sequential rationality. Insert the latter into 

the former, and without loss, we can rewrite: ),(~, qpARMAp ttt εε= , which is a  random walk model. 



 

Figure 1: The lowest-highest price intervals of Dow Jones from January 1990 to January 2010. 

 
We first take a notice that, Dow Jones prices seems to exhibit a time-unvarying variance from 
1990 to 1995 during the golden age of the US economy with the boom of information technology 
and the Internet. This phenomenon suggests that, there might have existed a norm or spontaneous 
order (after Hayek) that kept volatility of market momentum, tm , in check, without third-party 
enforcement9. However, from 1996 to 2009, the US economy seemed almost always to be beset 
by fads, booms, bubbles, and sudden crashes. It took roughly 13 years to re-inflate the economy, 
which was then struck down by the 2008-09 financial crises. This fact suggests that, the US 
economy must have had some errors or mutations, which had silently grown and changed the 
norm that kept tm  in check. One possibility is that some events had occurred that gradually 
raised the volatility of market momentum, tm , associated with the irrational part in investors’ 
minds. In a history perspective, this is the period that the US enjoyed (or suffered from) a 
massive and cheap lending, which induced the society to learn and adapt with new tastes and 
self-fulfilling beliefs. More precisely, the massive and cheap lending played a key role to induce 
people to learn and to adapt with positively autocorrelated price shocks, which investors 
perceived as the facts that fed the society's beliefs of becoming increasingly affluent. 
 
Volatility step-up then became a fact: from 1995 to 2005 (the ten years between the time prior to 
dotcom bubble and its aftermath), price volatility increased by roughly 100%, and stayed 
relatively flat thereafter until the financial crisis broke out in 2008. (In order not to be in bubbles, 
realized returns from productivity growth must increase by the same amount, but obviously it 
was not the case). Comparing between dotcom and real estate bubbles, the time for the transition 
from fads to booms to bubbles and then the turn into a sudden crash was shortened for the real 
estate crisis, with the result that this crisis hit the US economy much harder, due to volatility 

                                                            
9 From equation (1), ])1([),|( 11 ttttt mVarppVar ελβε +−=−− . Since, tε is a white noise, the confidence 

intervals of tp , centered at ])()1([ 11 −− −−+ ttt mEp λελβλ , exhibit a time unvarying pattern,  only if all 

elements of the covariant matrix of the random vector ),( ttm ε  are constant.  In this condition, the lowest-highest 
price intervals of Dow Jones can exhibit a time-unvarying pattern, from 1990 to 1995, as seen in Figure 1.  
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step- up.  So why did volatility step-up keep evolving unnoticed? Was there anything to do with 
changes in the spontaneous order that had kept the economy in a stable state in the period 1990-
95? And if that is the way the history has said, what is the reason behind the fact? 
 
 

3.3 Social Norms to Maintain Stability 

The Adaptive Expectation model (1) nets out the effect on a share’s price of a fundamental 
change, tε , from that of a spontaneous urge to action, whether it is due to hedonism or fear, after 
observing market momentum, tm . The latter is known as Herd Behavior (Keynes, 1936). This 
notion describes how individuals in a group can act together without planned direction.  Thus, it 
may help to illuminate how a spontaneous order may emerge to maintain stability; and why or 
how this norm may change, such that, some random errors may mutate into a great threat, tipping 
the economy into crises. 

To begin, let us take a notice that a spontaneous urge may emerge when a group of individuals 
face a danger. For instance, evolutionary biologist Hamilton (1971) asserted that when being 
threaten by a predator, each individual group member reduces the danger to itself by moving as 
close as possible to the center of the fleeing group. In financial markets, it means, when short-
term momentum, tm , sends a share’s price to a too high level than expected, aversion to risk 
rises. Thus, instead of buying more shares, investors sell them to move as close as possible to the 
center - the weighted average of investors’ expectations, ])()1([ 11 −− −−+ ttt mEp λελβλ . As the 
consequence, the share’s price is less volatile than it could have been. Psychologically, in the 
presence of such a spontaneous order - a natural check on risk-taking behavior - price volatility, 

2
1

2
1 ]])1([[)],|([ 11 ttttt mVarppVar ελβε +−=−− , tends to be confined in certain limits.  

An insight can be drawn from this argument: Once price uncertainty is moderate, information 
incorporated in prices should allow professionals to make a good judgment on risk and returns 
and act upon it. Subsequently, a share’s price may hardly deviate far from its value. A by-
product is incentive problems also become less severe. As stock prices reflect more accurate 
value, company managers will be encouraged to undertake right projects in hopes for a long term 
return, without fearing that their actions will depress current prices, making the company more 
vulnerable to takeover. Quasi-efficient markets then emerge, as incentive mechanisms (or made 
orders) are embedded in more complex spontaneous orders or norms to maintain stability and 
efficiency. 

So fear or hedonism is not necessarily bad as such instincts could serve to form the natural check 
on risk-taking behavior, from which a more elaborated institutional-arrangement emerges to 
nurture moral or professional codes of conduct – the rational side of the story. So how things 
could go wrong, as seen in the recent US bubbles and crashes? 

In biology, when a big shock hits the system, like a global climate change, it may make new 
species mutate more easily to a large number, such that, they can tip the balance of nature  into a 
new norm, that may be better or worse than the former.   

In the US economy, a shock came in the form of massive and cheap foreign capital, flowing into 
the United States. It was due to the boom of new technologies, the collapse of the Soviet bloc, 



wars and conflicts, or a join of those events. And like in biology, this shock could make 
mutations or errors easier to spread, impairing the coherence of institutional arrangements that 
had created the US a golden age between 1990and 1995. As cause-effect, the US economy could 
become more prone to fads, booms. Crises would be the result, as already suggested. 

But how can mutations mutate? Economists have long suggested that when the rate of capital 
inflows substantially surpasses the rate of productivity growth, it causes positive covariance 
among stock prices, which tend to perform extraordinarily in early stages of bubbles. Two effects 
then follow: First, short-sighted management may be prevailed. Firms that focus on speculation 
for short-term gains from bubbles will expand, whereas the ones that focus on creating bases for 
a long-enduring future may be among those most subject to takeover attempts (adverse risk 
selection). Second, as stock prices run up substantially, financial institutions, such as investments 
banks, see this phenomenon as a real opportunity for making money. They will lobby for 
stripping away regulations, so that they can well engage in extremely risky activities. They do so 
on the twin presumptions that: (1) favorable outcomes, when stock prices keep going up, will 
lead to unusually large profits for the banks; whereas (2) unfavorable outcomes, when bubbles 
burst, the banks walk away from heavy losses, which must be picked up by the government, 
which is responsible for the safety of the financial system. This is what Stiglitz – Weiss (1981) 
call “incentive effect”; Kane (1985), and Mc Kinnon (1991) call this “moral hazard in the 
banks”; Roubini (2010) and Stiglitz (2010) call it “socialization of private losses”10.  

The more the capital flow in to fuel market booms, the more easily the problems of adverse 
selection and moral hazard spread. These market failures, otherwise should be noises, now 
become a norm, although the bad norm. This is the outcome of the game, where many 
individuals interact in circumstances they are “teased” to take more risk. As capital inflows 
create series of positive shocks, the natural check on risk-taking behavior becomes weaker step 
by step. Large positive price shocks then get incorporated into expectations, [as modeled in 
equation (1)]. The expectation that prices will continue to rise becomes justified, making it self-
fulfilling. This gives financial institutions incentives to create more instruments, with more 
leverage, more risk taking than ever. We then see speciation in the financial world - the 
emergence of new species (or financial innovations) - as distinct from their ancestors and from 
one another in competing for making money out of bubbles. Thus, the system looks like in 
equilibrium, but in fact, it constantly adapts toward more risk-taking behavior. This process can 
not be in “equilibrium”, unless on the other side of the equation, foreign capital keeps pouring in 
to pump bubbles. Debts build up, as cause-effect. When debts reach an unbearable level, capital 
inflows dry out, and bubbles burst. To prevent the system from collapse, the bank bailouts are 
needed, which confirms the banks’ beliefs that they are too big to fail. 

A question arises: If the government is committed to take bailout option in the event of crisis; 
then why isn’t government regulation stringent enough to prevent crises from happening.  

To answer, let us focus only on the investment banks that act as underwriters to mitigate the 
problem of adverse selection. This monitoring is necessary because it transmits to the public the 
information about the companies, who have engaged in shoddy or unscrupulous business 
practices.  Such information allows investors to avoid excessive risk taking, thus making fads, 
booms, and bubbles harder to go on.    

                                                            
10 For a rigorous analysis of Moral Hazard in Banking, see for example, Hellmann, Murdock, and Stiglitz (2000). 



However, even if most of the banks work diligently, still there are some banks may enjoy moral 
hazard. As the natural check on risk taking is loosened, investors are willing to take more risk, 
Ponzi schema may mutate among the banks themselves11. When reverberating, these mutations 
may diversify into a large number of complex instruments, making the normal scrutiny 
dysfunctional. Further, such diversification creates momentum to turn public opinions against 
government’s regulation for the safety of the economy. Excessive risk-taking then spread in the 
favorable climate of the foreign capital inundation. Of course, in anticipating what will happen, 
once capital inflows increase at the macro level, some people may raise their voices. But they 
risk losing their jobs and become “extinct”. We now summarize our discussion in a very costly 
proposition below12: 

Proposition 2: In the presence of macroeconomic instability-cum-deregulation that aggravates 
adverse selection and moral hazard, the economy will deviate from the state of quasi-efficient 
markets and converge to the state of crises with probability 1.  

 
To prove this proposition, it is convenient to introduce the game below: 

 
The Moral-Hazard Game 

  
                Individual Investor: 
Investment Bank: 

   Avoid excessive risk-taking  Engage in excessive risk-taking 

     Manage Risk ),( RR  ),( γϕ −−  
      Create Risk ),( ϕγ −−  ),( rr  
 
 
Here, the investor buys instruments issued by the bank. These instruments are either stocks of the 
firms for which the bank is the underwriter (the bank manages risk); or they are mortgage-
backed securities, and the like, that the bank has created (the bank creates risk). Needless to say, 
this is a specific case of the Mispricing Game, which has some critical changes in the payoff 
structure: First, thanks to positive covariance among stock prices, which tend to perform 
extraordinarily in bubbles, expected losses of correcting mispricing, ϕ , increase. Second, due to 
deregulation, expected losses of taking excessive risk, γ , decrease. (That is, we observe a step-
wise change in payoffs, such that: *ϕϕ →k ; ,*γγ →k and ).,..,2,1,, 11 Kkkkkk =<> ++ γγϕϕ Third, 
because of moral hazard (or socialization of private losses), the expected returns from taking 
excessive risk are greater than the ones consistent with CAPM: r > R. Finally, since the change 
in payoffs is made step-wise, at the limit, we shall have a unique payoff structure, such that the 
low equilibrium has an evolutionary advantage: )()( ** γϕ −<− rR . 
   
Proof of Proposition 2: The game has two norms: First, the efficient one, denoted by 1E , which 
corresponds to the state of quasi- efficient markets; and second, the bad norm, 2E  , corresponds 

                                                            
11 This is what has been confessed by Mr. Madoff, who was charged with setting Ponzi schema that consumed about 
$20 billion in lost cash and almost $65 billion in paper wealth (The New York Time, Feb 15, 2011). 
12Mc Kinnon (Ch.7, 1992) introduces the core idea of this proposition.    



to excessive risk taking and debt buildup. Due to mutation, there are probabilities that the system 
can be transformed from one norm to another, and vice versa.  These transition probabilities 
form a Perturbed Markov process, δP , which is irreducible (Young, Ch.3, 1998). [Here, δ is 
probability of making “innovation” or mutation by players].  The question is, why under the 
climate of large capital inflows plus deregulation, mutation may cause the system to transform 
from 1E to 2E , but unlikely to go in the opposite direction.  
 
To see this,  let  δμν ,

1212, tt
 be probability of reaching 2E  from 1E in exact t periods, and the 

probability of visiting 2E  , starting from 1E  during t - periods, respectively. We have 
12,

1212
rtt P δν δ ≈= (multiplied by a constant), where, δ,tP is the t-fold product of δP ; and 12r is an 

integer defined by an adaptive learning rule, such that there is a one-to-one correspondence 
between 12r  and the risk factor of 2E (Young, Ch.4, 1998).  By the law of large number, when t is 
large, δμν ,

1212
tt ≈  . Further,  )( 2

,
12 Et δδ μμ ≈ , which is a stationary distribution of the perturbed 

Markov process, 
δP , measured at 2E . It implies, when δ  becomes small, )( 2Eδμ approaches to 

)( 2
0 Eμ , at a rate that is approximately equal to 12rδ . Thus,  the resistance of moving from 1E to 

2E is 12r . By the same chain of reasoning, the resistance of moving from 2E to 1E is 21r , which 
corresponds to the risk factor of 1E . The key point in Proposition 2 is that, under capital inflows-
cum- lax regulation, moral hazard in the banks is easier to spread. In a Markov process, that 
means moving from 1E to 2E is less resistant than going in the reverse direction, due to 2112 rr < . 

Or equivalently, when ,0→δ then ,0μμδ → which is a stationary distribution of the process 0P
, such that, ,0)( 2

0 >Eμ  and 0)( 1
0 =Eμ □ 

 
During a relatively short period in the modern US history, the system have transformed from the 
state of quasi-efficient markets, 1E , to an unsustainable state, 2E , causing volatility step-up, 
excessive risk-taking, and debt buildup. As a result, the 2008-2009 became unavoidable, with 
probability 1. 
 
Corollary 2: When the natural check on risk-taking behavior is loosened, price, tp , exhibits 
volatility-clustering. However, the longer the time period, the higher the frequency of extremely 
large volatility will be. This excessive risk-taking norm will remain, until bubbles burst.   
 
Proof of Corollary 2: Let tt up = , where tu is a linear combination of tm and tε , according to 

the specification of equation (1). From Figure 2, we shall assume, 
2)(,0)( ttt uVaruE σ== . Since 

tε is a white noise, volatility clustering of tp  is attributed to shifts in norms of risk taking that 

causes variance of tm to change over time.  

More specifically, volatility of tp  mirrors that of tm  (plus a constant, which is the standard 

deviation of tε ). Once the natural check on risk-taking behavior is relaxed (exactly, after 1995); 



risk taking behavior tends to oscillate between periods in which the first norm, 1E , and then the 

other norm, 2E , is dominant.  Those shifts in risk-taking norms cause variance of tm to change, 

such that, tp exhibits volatility clustering13. However, if 2E  has an evolutionary advantage; then 
in the long run, extremely large volatility will occur with a high frequency, until bubbles burst□ 

 

          Figure 2: Volatility of tp , from Jan. 1990 to Jan. 2010; the estimation uses data from 1928 to 2010. 
 
For clarity’s sake, we shall divide the modern history of Dow Jones into three periods. The first 
period, from 1990 to 1995, when volatility of tm (plus that of tε ) is confined within the two-
standard deviation interval. The second period is from 1996 to 2004. This period, in turn, is 
divided into two subsets, with the first one from 1996  to 2000, when dotcom bubbles was 
gradually pumped up until it finally burst in 2000. The second one is from 2001 to 2004, when 
volatility of tp  gradually becomes less extreme. A more prudent regulation had some role to 
play here to change the course of evolution in the norms of risk taking14. The third period is from 
2005 to 2010, when excessive risk taking became dominant. As time unfolded, large volatility 
appeared with a high frequency, until the financial crisis happened. History then provides 

                                                            
13 As already said, volatility clustering is the key phenomenon that gives birth to GARCH family. The simplest 

version is characterized by Auto Regressive, Conditionally Heteroscedasticity: 2/12
110 ][ −+= ttt u εααε , where tu

is standard normal. 
14 In the wake of terrorist attacks in the United States in 2001, companies who had engaged in shoddy or 
questionable bookkeeping were essentially caught in a series of government investigations. The loss of investor faith 
in the tech industry after this event then helps to put an end on otherwise an enduring dotcom bubbles. 
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evidence for the logic underlying the model. That is, shifts in norms of risk-taking drive price 
volatility.  

 Corollary 3: In short terms, temporary shifts in risk taking norms follow some specific rule.  

Proof of Corollary 3: Without loss, suppose the current state is at the prudent norm, 1E . 
Suppose further that, the resistance from 1E  to 2E  is greater than one and exactly one mutation 
occurs. The state of the game is still in the basin of attraction of 1E . Thus, after this one-time-
shock, the process will eventually revert to .1E  However, stochastic perturbations may not be 
isolated events. They can occur in succession (or with a high frequency) and within one class of 
players, such that, the number of mutations is greater than .12r  Given a specific rule of adaptive 
learning, these mutations may be sizable enough, such that the process is pushed out of the basin 
of attraction of 1E  and reaches a transient state. From that, the system can transit to 2E with 
probability one. The same logic can be applied for a transition from 2E to 1E , [even though, in 
the long run, it is harder for the system to follow this path than the other way around, if the 
resistance 1221 rr > ]□   

We then observe two opposite forces that work in any short period of time: First, local pull that 
keeps the system within the basin of attraction of one norm. When one isolated perturbation hits 
the system, the process will drift back to the original state. Second, local push, when one type of 
mutants occurs with a high frequency in a very short period, such mutations can be sizable 
enough to overcome gravity or local pull. Thus, they can tip the system away from the current 
norm and out of its basin of attraction. As a result, the process can transit to the other norm.      

Once again, we can see, when positively autocorrelated shocks appear frequently, adaptive 
learning process will surely lead people to accept more risk or larger price volatility in a step-up 
schema. An important implication is, once we have identified a specific pattern of unexpected 
shocks or momentums, we can predict a near future price move accordingly.  

 

4. Price Forecasts 
 
4.1 Specification : Autoregressive Distributed Lag Model  

To pave the way to a forecast model, let us zoom in on Figure 2 to observe the reflection of price 
volatility, caused by autocorrelated shocks in a short period of time.  

In Figure 3a below, a one-time-shock happened on 3/11/1996. The system then immediately 
reverted to the current norm, such that, the price change tp  was kept within the two-sigma 

interval. As time passed, the price change tp  tended to converge to zero.  



 

                         Figure 3a: Volatility of tp , in March 1996. The estimation uses data from 1928 to 2010. 

In Figure 3b, instead, positively autocorrelated shocks appeared frequently in a very short period, 
just a few days or a week, that raised investors’ appetite for taking excessive risk. As a result, tp  
became more volatile and frequently broke the two-sigma interval.   

 

           Figure 3b: Volatility of tp in March 2007. The estimation uses data from 1928 to 2010. 

Nevertheless, some common rule seems to apply for both cases. We first take a notice that, in 
any moment t, once an unexpected shock hits the system, which is materialized in the direction 
and the magnitude of the residual; it tends to cause 1+tp  to drift back in the opposite direction and 
by the same magnitude. This phenomenon is clearest, once a single shock hits the system hard 
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enough to push tp  to go beyond the two-sigma interval. This drift-back effect is nothing but 
local pull or gravity. In the same time, accumulation of shocks from the most recent past works 
in a way that garthers momentum to push 1+tp . This accumulation of forces creates local push, 
once positively autocorrelated shocks occur with a high frequency in just a few days. Thus, the 
sign and the magnitude of 1+tp  is influenced by two opposite forces. The current shock has a 

negative effect on 1+tp , whereas accumulation of shocks in a few days before has a positive 

effect on 1+tp .  

Note that, residuals of estimate of tp  reflect  time-varying variance of tm .  The rule of price 

motion discussed above suggests a general specification: .)()()( ttt LDmLBpLA ε+=   Or 
equivalently:  

qtqttKtKttptpttt mmmpppp −−−−−−− −−−+++++++= εθεθεβββααα ........ 111102211   (2) 

This is a finite distributed lag model or the Autoregressive Distributed Lag (ARDL) model, 
which is a generic form of the adaptive expectation model mentioned earlier. 

Given the rule of price motion, we shall restrict that Kkk ,..,2,0,0,0 10 =><> βββ , and 

|||| 10 ββ = . To simplify notations, we omit parameters associated with λ . Further, we still 

assume that, the disturbance tε in (2) is taken to be a serially uncorrelated, constant variance 
random variable. The fact is that, if the original disturbances were subject to autoregression, 
equation (2) would become the result of partial defferencing, which has removed that part of the 
disturbance process (Green, Ch.20, 2008).  Provided tε  is a white noise, Nonlinear Least 
Squares estimator will be consistent and asymtotically normally distributed15.  

The price forecast is then: 
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15 The sum to be minimized is ∑=Φ=
t

tSS .)(),,( 2εθβα The interation is ssssss GGG
^

'1'
^

1

^
][ ε−

+ −Φ=Φ    

Here, sG is a )1()( qKpqpT +++×−−  matrix of derivatives of residuals with respect to the parameters: 
'

1
'

0
'

1 ),...,(,),..,(,),...,( qKp θθθβββααα === ; and s

^
ε is vector of residuals at step s. 

 



An example of regression equation  (2) and its forecast (3) are given in Appendix 1. Given the 

expected square forecast errors, )|( 1

^
tmMSE t+ and )|( 1

^
tpMSE t+ , and given the foecast of price 

direction, one can calculate an approximation of tomorrow’s  price quotation. Notice further that,  
Figure 1 does suggest a practical way to make a fair judgment on how large is the price volatility 
on a daily basis. (In many cases, such a pragmatic method is not worser than what one can get 
from a tedious computation of volatility, using standard deviation). Given those facts, one should 
be able to predict the min – max interval for the next trading day.      

 

4.2 Using Patterns in Forecasts 

Like any specific form of equation (2), the distributed lag model given in Appendix 1 (model A1 
for short) makes use of most recent unexpected shocks, materialized in lagged variables tLm , to 

estimate the change in price, tp . These variables are very noisy. Therefore, the forecast 1

^

+tm   is 

sufferred from an attenuation effect and it may have a wrong sign. Since 1

^

+tm  enters into forecat 

equation (3), the prediction 1

^

+tp   is suffered from the same problems as well. When it has a 
wrong sign, the approximation mentioned earlier can not fix the attenuation effect. Instead, it 
exaggerates the forecast error. Therefore, simply using the forecast of  model A1 is often 
misleading. 

To overcome this problem of precision, let us take a closer look at two series of rolling averages, 
M7 and M9, whose difference forms one term in the tLm  part in model A1. They seem to 
incorporate most recent unexpected shocks rather smoothly (see figure A1). Therefore, their 3 – 
step - ahead forecast may characterize a pattern that allows us to study how unexpected shocks 
affect expectation of price move. Thus, when such a pattern repeats itself, it will allow us to learn 

which specific form of equation (2) is suitable for the forecast of tp . To see how this procedure 
may work, let us look at Figure A1 again: 



 

 

For clarity, let us divide Figure A1 into two parts: before and after date t, May 18, 2010 (or the 

sample 9289). It is the time when markets have observed tp , while guessing .1+tp  By definition, 
most recent unexpected shocks have been incorporated in series M7 and M9. Thus, their 
forecasts reflect how  local push affects the market’s expectation of price move. In this particular 
case, the local push is powerful enough to bend down both M7 and M9. By backward induction, 
at time (t+1), the local push tends to force the price to go down.  

Next, before date t, markets expected that there would have a slowdown in the temporarily 
upward trend of prices. And exactly at date t,  the actual price has confirmed this market’s 
expectation. By forward induction, rational expectation should nullify the force of local pull. 
Now, combining both forward and backward inductions, one can judge that local push outweighs 
local pull and the price should go down at date (t+1).  

Obviously, market prices are so noisy and we often cannot have a clear idea whether local pull 
will outweigh local push or the reverse holds true. But one rule seems to emerge from this simple 
example. When positively autocorrelated shocks appear with a high frequency in a short period 
of time, the three-step-ahead forecasts of M7 and M9 will embody all available information 
about how the local push affects the market’s expectation of price move.  The magnitude of local 
pull, instead, has been defined by the actual price move at date t. Thus, by properly adding series 
[M7 - M9] into equation (2), the problem of precision should be mitigated. An example is given 
in Appendix A2.   

Conjecture 1: For any pattern formed by the three-step-ahead forecasts of M7 and M9, we only 
need a finite number of specific forms of equations (2) to capture the information about how the 
balance between local pull and push has been made by precedents. 
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Conjecture 2: There is a one-to-one correspondence between each pattern and a specific form 
of equation (2) that allows us to overcome the problem of precision.   

 To argue why these conjectures should hold, we shall take several notices. First, no matter how 
markets may be, the two opposite forces, local pull and push, always work simultaneously to 
govern market prices. Thus, there are only a finite number of situations that reflect the balance 
between two forces. Second, no matter what situation may emerge, the best estimate of the local 
pull and push can only be made by the market’s forecasts of series M7 and M9. As a matter of 
facts, a shorter rolling average, such as M3, is too noisy, while a longer one, like M40, is too 
irrelevant. They will not work for our purpose of estimate of changes in the balance between the 
two opposite forces. Third, since the improvement of precision requires series M7 and M9, there 
are only a finite number of specific forms of equation (2) that one can try. And finally, through 
learning by doing, one should be able to discover the link between each pattern with one specific 
form of equation (2) that gives us the best estimate of price move.      

 

5. Conclusions 

 

 

 

 

 

Appendix 1: A Distributed Lag Model for Changes in Kitco Gold Price: 

Table A1: Estimate of a Distributed lag Model for changes in Kitco’s gold price, using Eviews. 

Dependent Variable: D(GOLD)   
Method: Least Squares   
Date: 05/19/10   Time: 22:42   
Sample: 100 9289   
Included observations: 9190   
Convergence achieved after 16 iterations  
Backcast: 91 99   

Variable Coefficient Std. Error t-Statistic Prob.   

D(GOLD(-1)) -1.000969 0.001892 -528.9798 0.0000 
D(GOLD(-2)) -1.184721 0.001576 -751.6584 0.0000 



D(GOLD(-3)) 0.176734 0.001733 102.0075 0.0000 
D(GOLD(-4)) 0.170227 0.002354 72.31546 0.0000 

M3-M9 4.387544 0.003377 1299.131 0.0000 
M3(-1)-M9(-1) -4.211463 0.004687 -898.5474 0.0000 
M7(-1)-M9(-1) 2.026977 0.007125 284.4953 0.0000 
M7(-2)-M9(-2) 0.700128 0.003117 224.5949 0.0000 
M7(-1)-T40(-1) -0.373119 0.007742 -48.19487 0.0000 
M7(-2)-T40(-2) 0.350322 0.007407 47.29808 0.0000 

MA(1) -1.087693 0.010590 -102.7060 0.0000 
MA(2) 1.036716 0.013761 75.33477 0.0000 
MA(3) 0.241308 0.016735 14.41926 0.0000 
MA(4) -0.533850 0.017062 -31.28879 0.0000 
MA(5) 0.647388 0.016527 39.17231 0.0000 
MA(6) -0.038465 0.017011 -2.261239 0.0238 
MA(7) -0.252714 0.016639 -15.18786 0.0000 
MA(8) 0.434830 0.013614 31.94031 0.0000 
MA(9) -0.356030 0.010216 -34.85171 0.0000 

R-squared 0.994074     Mean dependent var 0.119587 
Adjusted R-squared 0.994063     S.D. dependent var 6.735960 
S.E. of regression 0.519037     Akaike info criterion 1.528380 
Sum squared resid 2470.658     Schwarz criterion 1.543113 
Log likelihood -7003.908     Durbin-Watson stat 2.258056 

Inverted MA Roots       .72      .71+.65i    .71-.65i  .38-.92i 
  .38+.92i     -.10-.84i   -.10+.84i -.82+.28i 
 -.82-.28i   

 

Here, GOLD is Kitco’s PM quotation; local pull (or gravity) is reflected by negative weights at 
lag of one, [M3(-1)-M9(-1)] and  [M7(-1)-M40(-1)]. Local push is reflected by positive weights at 

lags [M7(-1)-M9(-1)], [M7(-2)-M9(-2)], [M7(-2)-M40(-2)], where ∑
+−=

=
t

t
GOLDM
1

)(1
κτ

τ
κ

κ . So tm  is 

nothing but the gap between two rolling averages that allows us to measure the magnitude of 
short term momentum at time t.  

Table A1: Actual Kitco’s gold prices on May 19, 2010 



 

Table A2: Kitco’s quotations on gold prices,  May 17 - 19, 2010 

Date  obs   PM (GOLD)  Min ‐ Max 

May 17, 2010  9288  1236  1220 ‐ 1242 

May 18, 2010  9289  1216.75  1208 ‐ 1229 

May 19, 2010  9290  1195  1289 ‐ 1220 
 

 

 

Figure A1: PM quotation (GOLD, until May 18, 2010) and T+3 short term momentum forecasts 

 

 

Figure A2: Price forecast for May 19, 2010 (observation 9290) 

1120

1140

1160

1180

1200

1220

1240

9275 9280 9285 9290

GOLD M7 M9



 

1120

1140

1160

1180

1200

1220

1240

1260

9275 9280 9285 9290

GOLDF

Forecast: GOLDF
Actual: GOLD
Forecast sample: 9272 9292
Adjusted sample: 9272 9290
Included observations: 18

Root Mean Squared Error 0.843696
Mean Absolute Error      0.619631
Mean Abs. Percent Error 0.051796
Theil Inequality Coefficient  0.000354
     Bias Proportion         0.002037
     Variance Proportion  0.023952
     Covariance Proportion  0.974010


