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Abstract

In this paper, we study the existence of an intertemporal equilibrium
in a Ramsey model with heterogenous discounting, elastic labor supply
and borrowing constraints. Applying a fixed-point argument by Gale and
Mas-Colell (1975), we prove the existence of an equilibrium in a trun-
cated bounded economy. This equilibrium is also an equilibrium of any
unbounded economy with the same fundamentals. Finally, we prove the
existence of an equilibrium of an infinite-horizon economy as a limit of a
sequence of truncated economies. On the one hand, our paper generalizes
Becker et al. (1991) because of the elastic labor supply and, on the other
hand, Bosi and Seegmuller (2010) because of a proof of global existence.
Our methodology can be applied to other Ramsey models with different
market imperfections.
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1 Introduction

Ramsey (1928) remains the most influential paper in growth literature and an
inexhaustible source of inspiration for theorists. One of the puzzling aspects of
the model is the so-called Ramsey conjecture: ”... equilibrium would be attained
by a division into two classes, the thrifty enjoying bliss and the improvident at
the subsistence level” (Ramsey (1928), p. 559). This sentence ends the paper
and means that, in the long run, the most patient agents would hold all the
capital, while the others would live at their subsistence level. The Ramsey
conjecture was proved by Robert Becker more than half a century later.

Becker (1980) pioneers a series of works during three decades on the prop-
erties of a Ramsey equilibrium under heterogenous discounting.1 He shows the
existence of a long-run equilibrium where the most patient agent holds the cap-
ital of the economy, while the impatient ones consume their labor income. The
existence of the steady state rests on the introduction of borrowing constraints
that prevent agents to borrow against their future labor income.

The complete markets case is considered by other authors. Le Van and
Vailakis (2003) prove that, when individuals are allowed to borrow against fu-
ture income, the impatient agents borrow from the patient one and spend the
rest of their life to work to refund the debt. In addition, their consumption
asymptotically vanishes and there is no longer room for a steady state. The
extension with elastic labor supply, which is pertinent for a comparison with
our paper, is provided by Le Van et al. (2007).

Borrowing constraints are credit market imperfections that change the equi-
librium properties in terms of: (1) optimality, (2) stationarity and (3) mono-
tonicity.

(1) Optimality. Credit market incompleteness entails the failure of the first
welfare theorem. As a matter of fact, it is no longer possible to prove the
existence of a competitive equilibrium by studying the set of Pareto-efficient
allocations as done by Le Van and Vailakis (2003) and Le Van et al. (2007),
among others, in absence of market imperfections.

(2) Stationarity. Under borrowing constraints, there exists a stationary state
where impatient agents consume. The steady state vanishes when these con-
straints are retired: in the complete markets counterpart, Le Van and Vailakis
(2003) and Le Van et al. (2007) show that the convergence of the optimal capi-
tal sequence to a particular stock still holds, but this stock is not itself a steady
state.

(3) Monotonicity. In presence of borrowing constraints, persistent cycles
arise (Becker (1980), Becker and Foias (1987, 1994), Sorger (1994)). To un-
derstand the role of these constraints, it is worthy to compare with similar
models where markets are complete: Le Van and Vailakis (2003) and Le Van
et al. (2007) also find that, under discounting heterogeneity, the monotonicity
property of the representative agent counterpart does not carry over and that
a twisted turnpike property holds (see Mitra (1979) and Becker (2005)). The

1For a survey on this literature, the reader is referred to Becker (2006).
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very difference with the class of models à la Becker is that the optimal capi-
tal sequence always converges in the long run and, thus, there is no room for
persistent cycles.

What is the reason of persistence? Becker and Foias (1987, 1994) show that
cycles of period two may occur when capital income monotonicity fails, that is
capital income is decreasing in the capital stock.

Thereby, the Ramsey conjecture holds under perfect competition, but also
under the kind of imperfection represented by financial constraints. However,
the introduction of other forms of imperfections makes this conjecture frag-
ile. Prominent examples are given by distortionary taxation and market power.
Sarte (1997) and Sorger (2002) study a progressive capital income taxation,
while Becker and Foias (2007) and Sorger (2002, 2005, 2008) focus on the strate-
gic interaction in the capital market. They prove the possibility of a long-run
non-degenerated distribution of capital where impatient agents hold capital.

Our paper addresses the difficult question of the existence of an intertempo-
ral equilibrium under borrowing constraints. The usual proof of existence à la
Negishi no longer applies because markets are imperfect.

Becker et al. (1991) have shown the existence of an intertemporal equilibrium
under borrowing constraints with inelastic labor supply. The argument of the
proof rests on the introduction of a tâtonnement map giving an equilibrium as
a fixed point of the map.

Bosi and Seegmuller (2010) provide a local proof of existence of an intertem-
poral equilibrium with elastic labor supply. Their argument rests on the exis-
tence of a local fixed point for the policy function based on the local stability
properties of the steady state.

In this respect, the novelty of our paper is twofold.
(1) We generalize Becker et al. (1991) by considering an elastic labor supply.
(2) We go beyond Bosi and Seegmuller (2010) by providing a proof of global

existence.
We show the existence of an intertemporal equilibrium in presence of market

imperfections by applying a method inspired by Florenzano (1999), a model with
incomplete markets. This method is based on a Gale and Mas-Colell (1975)
fixed-point argument and can be applied in other contexts.

The entire paper is devoted to the proof of existence and is articulated in
two steps.

(1) We first consider a time-truncated economy. Since the feasible alloca-
tions sets of our economy are uniformly bounded, we prove that there exists
an equilibrium in a time-truncated bounded economy by using the theorem of
Gale-Mas-Colell. Actually, this equilibrium turns out to be an equilibrium for
the time-truncated economy.

(2) Secondly, we take the limit of a sequence of truncated unbounded economies
and we prove the existence of an intertemporal equilibrium in the limit economy.

These points correspond to the two main sections of the paper. Most of the
proofs are given in Appendices 1 and 2.
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2 Firms

We consider a representative firm with no market power. The technology is rep-
resented by a constant returns to scale production function: F (Kt, Lt), where
Kt and Lt are the aggregate capital and the aggregate labor. Profit max-
imization: maxKt,Lt [ptF (Kt, Lt)− rtKt − wtLt], gives ∂F/∂Kt = rt/pt and
∂F/∂Lt = wt/pt. We introduce the set of nonnegative real numbers: R+ ≡
{x ∈ R : x ≥ 0}. Profit maximization is correctly defined under the following
assumption.2

Assumption 1 F : R2
+ → R+ is C1, constant returns to scale, strictly increas-

ing and concave. We assume that inputs are essential: F (0, L) = F (K, 0) = 0.
In addition, F (K, L) → +∞ when L > 0 and K → +∞ or when K > 0 and
L → +∞.

Let us introduce also boundary conditions on capital productivity when the
labor supply is maximal and equal to m in order to simplify the proof of equi-
librium existence.

Assumption 2 (∂F/∂Kt) (0,m) > δ and (∂F/∂Kt) (+∞,m) < δ, where δ ∈
(0, 1) denotes the rate of capital depreciation.

3 Households

We consider an economy without population growth where m households work
and consume. Each household i is endowed with ki0 units of capital at period
0 and 1 unit of leisure-time per period. Leisure demand of agent i at time t
is denoted by λit and the individual labor supply is given by lit = 1 − λit.
Individual wealth and consumption demand at time t are denoted by kit and
cit.

We assume the initial capital endowments to be positive.

Assumption 3 ki0 > 0 for i = 1, . . . ,m.

It is known that, in economies with heterogenous discounting and no bor-
rowing constraints, impatient agents borrow, consume more and work less in the
short run, and that they consume less and work more in the long run to refund
the debt to patient agents. In our model, agents are prevented from borrowing:
kit ≥ 0 for t = 1, 2, . . . and i = 1, . . . ,m.

2The shortcut of maximization of an aggregate profit rests on the following argument.
Consider a large number q of firms that share the same technology and have no market power.
Each firm j maximizes the profit ptF (kjt, ljt) − rtkjt − wtljt in every period: t = 0, 1, . . .
This gives ∂F/∂kjt = rt/pt and ∂F/∂ljt = wt/pt which in turn implies that the ratio kjt/ljt

is the same across the firms. Let (Kt, Lt) ≡
“Pq

j=1 kjt,
Pq

j=1 ljt

”
be the aggregate solution.

We define an aggregate production function: F (Kt, Lt). Since productivities ∂F/∂kjt and
∂F/∂ljt are homogeneous of degree zero, the aggregate solution is also solution of the aggregate
program: maxKt,Lt [ptF (Kt, Lt)− rtKt − wtLt].
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Each household maximizes a utility separable over time:
∑T

t=0 βt
iui (cit, λit),

where βi ∈ (0, 1) is the discount factor of agent i.

Assumption 4 ui : R2
+ → R is C1, strictly increasing and concave.

4 Definition of equilibrium

We define an infinite-horizon sequences of prices and quantities:

(p, r,w, (ci,ki,λi)
m
i=1 ,K,L)

where

(p, r,w) ≡ ((pt)
∞
t=0 , (rt)

∞
t=0 , (wt)

∞
t=0) ∈ R∞ × R∞+ × R∞+

(ci,ki,λi) ≡ ((cit)
∞
t=0 , (kit)

∞
t=1 , (λit)

∞
t=0) ∈ R∞+ × R∞ × R∞+

(K,L) ≡ ((Kt)
∞
t=0 , (Lt)

∞
t=0) ∈ R∞+ × R∞+

with i = 1, . . . ,m.

Definition 1 A Walrasian equilibrium
(
p̄, r̄, w̄,

(
c̄i, k̄i, λ̄i

)m
i=1

, K̄, L̄
)

satisfies
the following conditions.

(1) Price positivity: p̄t, r̄t, w̄t > 0 for t = 0, 1, . . .
(2) Market clearing:

goods :
m∑

i=1

[
c̄it + k̄it+1 − (1− δ) k̄it

]
= F

(
K̄t, L̄t

)
capital : K̄t =

m∑
i=1

k̄it

labor : L̄t =
m∑

i=1

l̄it

for t = 0, 1, . . ., where lit = 1− λit denotes the individual labor supply.
(3) Optimal production plans: p̄tF

(
K̄t, L̄t

)
− r̄tK̄t − w̄tL̄t is the value of

the program: max [p̄tF (Kt, Lt)− r̄tKt − w̄tLt], for t = 0, 1, . . . under the con-
straints Kt ≥ 0 and Lt ≥ 0.

(4) Optimal consumption plans:
∑∞

t=0 βt
iui

(
c̄it, λ̄it

)
is the value of the pro-

gram: max
∑∞

t=0 βt
iui (cit, λit), under the following constraints:

budget constraint : p̄t [cit + kit+1 − (1− δ) kit] ≤ r̄tkit + w̄t (1− λit)
borrowing constraint : kit+1 ≥ 0

leisure endowment : 0 ≤ λit ≤ 1
capital endowment : ki0 ≥ 0 given

for t = 0, 1, . . .
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The following claims are essential in our paper.

Claim 1 Labor supply is bounded.

Proof. At the individual level, because lit = 1− λit ∈ [0, 1]. At the aggregate
level, because 0 ≤

∑m
i=1 lit ≤ m.

Claim 2 Under Assumptions 1 and 2, individual and aggregate capital supplies
are bounded.

Proof. At the individual level, because of the borrowing constraint, we have
0 ≤ kit ≤

∑m
h=1 kht.

To prove that the individual capital supply is bounded, we prove that the
aggregate capital supply is bounded. We want to show that 0 ≤

∑m
h=1 kht ≤

max {x,
∑m

i=1 ki0} ≡ A, where x is the unique solution of

x = (1− δ) x + F (x,m) (1)

Since F is C1, increasing and concave, F (0, L) = 0 and

1− δ + (∂F/∂Kt) (0,m) > 1 > 1− δ + (∂F/∂Kt) (+∞,m)

(Assumptions 1 and 2), the solution of (1) is unique. Moreover, x ≤ y implies

(1− δ) y + F (y, m) ≤ y (2)

We notice that
m∑

i=1

kit+1 ≤
m∑

i=1

(cit + kit+1) ≤ (1− δ)
m∑

i=1

kit + F

(
m∑

i=1

kit,

m∑
i=1

lit

)

≤ (1− δ)
m∑

i=1

kit + F

(
m∑

i=1

kit,m

)
because F is increasing, the capital employed cannot exceed its aggregate supply∑m

i=1 kit and
∑m

i=1 lit ≤ m. Let xt ≡
∑m

i=1 kit. Then, xt+1 ≤ (1− δ) xt +
F (xt,m).

We observe that x0 ≤ max {x, x0} ≡ A. Therefore, x1 ≤ (1− δ) x0 +
F (x0,m) ≤ (1− δ) A + F (A,m) ≤ A because x ≤ A and, from (2), (1 −
δ)A + F (A,m) ≤ A. Iterating the argument, we find xt ≤ A for t = 0, 1, . . .

Claim 3 Under Assumptions 1 and 2, consumption is bounded.

Proof. At the individual level, we have 0 ≤ cit ≤
∑m

h=1 cht.
To prove that the individual consumption is bounded, we prove that the

aggregate consumption is bounded.
m∑

i=1

cit ≤
m∑

i=1

(cit + kit+1) ≤ (1− δ)
m∑

i=1

kit + F

(
m∑

i=1

kit,m

)
≤ (1− δ) A + F (A,m) ≤ A
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5 On the existence of equilibrium in a finite-
horizon economy

We consider an economy which goes on for T + 1 periods: t = 0, . . . , T .
Focus first on a bounded economy, that is choose sufficiently large bounds

for quantities:

Xi ≡ {(ci0, . . . , ciT ) : 0 ≤ cit ≤ Bc} = [0, Bc]
T+1 with A < Bc

Yi ≡ {(ki1, . . . , kiT ) : 0 ≤ kit ≤ Bk} = [0, Bk]T with A < Bk

Zi ≡ {(λi0, . . . , λiT ) : 0 ≤ λit ≤ 1} = [0, 1]T+1

Y ≡ {(K0, . . . ,KT ) : 0 ≤ Kt ≤ BK} = [0, BK ]T+1 with A < BK

Z ≡ {(L0, . . . , LT ) : 0 ≤ Lt ≤ BL} = [0, BL]T+1 with m < BL

We notice that ki0 is given and that the borrowing constraints (inequalities
kit ≥ 0) capture the imperfection in the credit market.3

Let ET denote this economy with technology and preferences as in Assump-
tions 1 to 4 and with Xi, Yi and Zi as the ith consumer-worker’s bounded
sets of consumption demand, capital supply and leisure demand respectively
(i = 1, . . . ,m), and Y and Z as the firm’s bounded sets of capital and labor
demands respectively.

Proposition 1 Under the Assumptions 1, 2, 3 and 4, there exists an equilib-
rium (

p̄, r̄, w̄,
(
c̄h, k̄h, λ̄h

)m
h=1

, K̄, L̄
)

for the finite-horizon bounded economy ET .

Proof. The proof is quite long and articulated in many claims (see Appendix
1).

Focus now on an unbounded economy.

Theorem 4 Any equilibrium of ET is an equilibrium for the finite-horizon un-
bounded economy.

Proof. Let
(
p̄, r̄, w̄,

(
c̄h, k̄h, λ̄h

)m
h=1

, K̄, L̄
)

with p̄t, r̄t, w̄t > 0, t = 0, . . . , T , be
an equilibrium of ET .

Let (ci,ki,λi) verify
∑T

t=0 βt
iui (cit, λit) >

∑T
t=0 βt

iui

(
c̄it, λ̄it

)
. We want to

prove that this allocation violates at least one budget constraint, that is that
there exists t such that

p̄t [cit + kit+1 − (1− δ) kit] > r̄tkit + w̄t (1− λit) (3)

Focus on a strictly convex combination of (ci,ki,λi) and
(
c̄i, k̄i, λ̄i

)
:

cit (γ) ≡ γcit + (1− γ) c̄it

kit (γ) ≡ γkit + (1− γ) k̄it (4)
λit (γ) ≡ γλit + (1− γ) λ̄it

3A possible generalization of credit constraints is hi ≤ kit with hi < 0 given.
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with 0 < γ < 1. Notice that we assume that the bounds satisfy Bc, Bk, BK > A
and BL > m in order ensure that we enter the bounded economy when the
parameter γ is sufficiently close to 0.

Entering the bounded economy means (ci (γ) ,ki (γ) ,λi (γ)) ∈ Xi×Yi×Zi.
In this case, because of the concavity of the utility function, we find

T∑
t=0

βt
iui (cit (γ) , λit (γ)) ≥ γ

T∑
t=0

βt
iui (cit, λit) + (1− γ)

T∑
t=0

βt
iui

(
c̄it, λ̄it

)
>

T∑
t=0

βt
iui

(
c̄it, λ̄it

)
Since (ci (γ) ,ki (γ) ,λi (γ)) ∈ Xi×Yi×Zi and

(
p̄, r̄, w̄,

(
c̄h, k̄h, λ̄h

)m
h=1

, K̄, L̄
)

is an equilibrium for this economy, there exists t ∈ {0, . . . , T} such that

p̄t [cit (γ) + kit+1 (γ)− (1− δ) kit (γ)] > r̄tkit (γ) + w̄t (1− λit (γ))

Replacing (4), we obtain

p̄t

(
γcit + (1− γ) c̄it + γkit+1 + (1− γ) k̄it+1 − (1− δ)

[
γkit + (1− γ) k̄it

])
> r̄t

[
γkit + (1− γ) k̄it

]
+ w̄t

(
1−

[
γλit + (1− γ) λ̄it

])
that is

γp̄t [cit + kit+1 − (1− δ) kit] + (1− γ) p̄t

[
c̄it + k̄it+1 − (1− δ) k̄it

]
> γ [r̄tkit + w̄t (1− λit)] + (1− γ)

[
r̄tk̄it + w̄t

(
1− λ̄it

)]
Since p̄t

[
c̄it + k̄it+1 − (1− δ) k̄it

]
= r̄tk̄it + w̄t

(
1− λ̄it

)
, we obtain (3). Thus(

p̄, r̄, w̄,
(
c̄h, k̄h, λ̄h

)m
h=1

, K̄, L̄
)

is also an equilibrium for this unbounded econ-
omy.

6 On the existence of equilibrium in an infinite-
horizon economy

In the section, we introduce a separable utility and, for simplicity, we denote
by ui the utility of consumption and by vi that of leisure. If wi is the utility
defined on both these arguments, we have wi (cit, λit) ≡ ui (cit) + vi (λit).

Assumption 5 The utility function is separable: wi (cit, λit) ≡ ui (cit)+vi (λit),
with ui, vi : R+ → R and ui, vi ∈ C1. In addition, we assume that ui (0) =
vi (0) = 0, u′i (0) = v′i (0) = +∞, u′i (cit) , v′i (λit) > 0 for cit, λit > 0, and that
functions u, v are concave.

Theorem 5 Under the Assumptions 1, 2, 3 and 5, there exists an equilibrium
in the infinite-horizon economy with endogenous labor supply and borrowing
constraints.
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Proof. We consider a sequence of time-truncated economies and the associated
equilibria. We prove that there exists a sequence of equilibria which converges,
when the horizon T goes to infinity, to an equilibrium of the infinite-horizon
economy. The proof is detailed in Appendix 2.

7 Conclusion

In this paper, we have shown the existence of an intertemporal equilibrium with
market imperfections (borrowing constraints). Applying the fixed-point theorem
of Gale-Mas-Colell, we have proved the existence of an equilibrium in a finite-
horizon bounded economy. This equilibrium turns out to be also an equilibrium
of any unbounded economy with the same fundamentals. Eventually, we have
shown the existence of an equilibrium in an infinite-horizon economy as a limit of
a sequence of truncated economies by applying a uniform convergence argument.

The paper generalizes in one respect Becker et al. (1991) by considering
an elastic labor supply, and, in another respect, Bosi and Seegmuller (2010) by
providing a proof of global existence. Our methodology, inspired by Florenzano
(1999) is quite general and can be applied to other Ramsey models with different
market imperfections.

8 Appendix 1: finite horizon

Let us prove Proposition 1.
We define a bounded price set:

P ≡ {(p, r,w) : −1 ≤ pt ≤ 1, 0 ≤ rt ≤ 1, 0 ≤ wt ≤ 1, t = 0, . . . , T}

At this stage, we put no restriction on the sign of pt. We will prove later the
positivity of the good price through an equilibrium argument.

Focus now on the budget constraints:

pt [cit + kit+1 − (1− δ) kit] ≤ rtkit + wt (1− λit)

for t = 0, . . . , T − 1 and pT [ciT − (1− δ) kiT ] ≤ rT kiT + wT (1− λiT ).
In the spirit of Bergstrom (1976), we introduce modified budget sets:

Bi (p, r,w)

≡


(ci,ki,λi) ∈ Xi × Yi × Zi :

pt [cit + kit+1 − (1− δ) kit] < rtkit + wt (1− λit) + γ (pt, rt, wt)
t = 0, . . . , T − 1

pT [ciT − (1− δ) kiT ] < rT kiT + wT (1− λiT ) + γ (pT , rT , wT )


Ci (p, r,w)

≡


(ci,ki,λi) ∈ Xi × Yi × Zi :

pt [cit + kit+1 − (1− δ) kit] ≤ rtkit + wt (1− λit) + γ (pt, rt, wt)
t = 0, . . . , T − 1

pT [ciT − (1− δ) kiT ] ≤ rT kiT + wT (1− λiT ) + γ (pT , rT , wT )


9



where γ (pt, rt, wt) ≡ 1−min {1, |pt|+ rt + wt}.
Let B̄i (p, r,w) denote the closure of Bi (p, r,w).

Claim 6 For every (p, r,w) ∈ P , we have Bi (p, r,w) 6= ∅ and Ci (p, r,w) =
B̄i (p, r,w).

Proof. Without loss of generality, focus on the modified budget constraints of
the first two periods:

p0 [ci0 + ki1 − (1− δ) ki0] < r0ki0 + w0 (1− λi0) + γ (p0, r0, w0) (5)
p1 [ci1 + ki2 − (1− δ) ki1] < r1ki1 + w1 (1− λi1) + γ (p1, r1, w1) (6)

We know that −1 ≤ pt ≤ 1, 0 ≤ rt ≤ 1, 0 ≤ wt ≤ 1.
(1) Assume that |p0|+ r0 + w0 < 1. Then γ (p0, r0, w0) > 0.
Assume Bc to be large enough to set ci0 = (1− δ) ki0 and choose λi0 = 1 (we

stay in Xi ×Zi). Then the inequality (5) becomes p0ki1 < r0ki0 + γ (p0, r0, w0)
and it is satisfied if ki1 > 0 is sufficiently close to zero.

Focus now on the second period and two subcases.
(1.1) Assume that |p1|+ r1 + w1 < 1. Then γ (p1, r1, w1) > 0.
If p1 < 0, choose ci1 sufficiently large (assume the upper bound Bc to be

large enough) and the inequality (6) is satisfied.
If p1 ≥ 0, set ci1 = ki2 = 0 and the inequality (6) becomes −p1 (1− δ) ki1 <

r1ki1 + w1 (1− λi1) + γ (p1, r1, w1) and it is satisfied. Notice that, in this case,
inequality (6) is satisfied also if ki2 > 0 but sufficiently close to zero.

(1.2) Assume that |p1|+ r1 + w1 ≥ 1. Then γ (p1, r1, w1) = 0.
If p1 < 0, choose ci1 sufficiently large (assume the upper bound Bc to be

large enough) and the inequality (6) is satisfied.
If p1 = 0, choose λi1 = 0. The inequality (6) becomes 0 < r1ki1 + w1 and,

since either r1 > 0 or w1 > 0, it is satisfied because ki1 > 0 (see point (1)).
If p1 > 0, set ci1 = ki2 = 0: the inequality (6) becomes −p1 (1− δ) ki1 <

r1ki1 + w1 (1− λi1) and is satisfied because ki1 > 0 (see point (1)) and δ < 1.
Notice that, in this case, inequality (6) is satisfied also if ki2 > 0 but sufficiently
close to zero.

(2) Assume that |p0|+ r0 + w0 ≥ 1. Then γ (p0, r0, w0) = 0.
If p0 < 0, assume Bc to be large enough to set ci0 = (1− δ) ki0 and choose

ki1 > 0. Inequality (5) becomes p0ki1 < r0ki0 + w0 (1− λi0) and it is satisfied.
If p0 = 0, we have either r0 > 0 or w0 > 0. Set λi0 = 0 < ki1. Inequality

(5) becomes 0 < r0ki0 + w0. We can not exclude the case r0 = 0 or w0 = 0, but
Assumption 3 ensures that inequality (5) is verified.

If p0 > 0, set ci0 = 0 and 0 < ki1 < (1− δ) ki0. Inequality (5) becomes
p0 [ki1 − (1− δ) ki0] < r0ki0 + w0 (1− λi0) and it is satisfied.

Focus on the second period and two subcases.
(2.1) Assume that |p1|+ r1 + w1 < 1. Then γ (p1, r1, w1) > 0.
The same arguments of point (1.1) apply.
(2.2) Assume that |p1|+ r1 + w1 ≥ 1. Then γ (p1, r1, w1) = 0.
The same arguments of point (1.2) apply (just replace ”see point (1)” with

”see point (2)”).

10



Thus, we have proved that, for whatever price system (p, r,w) ∈ P , there ex-
ists (ci,ki,λi) ∈ Bi (p, r,w). In addition, Bi (p, r,w) 6= ∅ implies Ci (p, r,w) =
B̄i (p, r,w) for every (p, r,w) ∈ P .

Claim 7 Bi is a lower semi-continuous correspondence on P .

Proof. We observe that Bi has an open graph.

Claim 8 Ci is upper semi-continuous on P with closed convex values.

Proof. We remark that the inequalities in the definition of Ci are affine and
that XT

i × Y T
i × ZT

i is a compact convex set. Thus Ci has a closed graph with
convex values.

In the spirit of Gale and Mas-Colell (1975,1979), we introduce the reaction
correspondences ϕi (p, r,w, (ch,kh,λh)m

h=1 ,K,L), i = 0, . . . ,m + 1 defined on
P × [×m

h=1 (Xh × Yh × Zh)]×Y ×Z, where i = 0 denotes an ”additional” agent,
i = 1, . . . ,m the consumers, and i = m+1 the firm. These correspondences are
defined as follows.

Agent i = 0 (the ”additional” agent):

ϕ0 (p, r,w, (ch,kh,λh)m
h=1 ,K,L)

≡


(p̃, r̃, w̃) ∈ P :∑T

t=0 (p̃t − pt) (
∑m

i=1 [cit + kit+1 − (1− δ) kit]− F (Kt, Lt))
+
∑T

t=0 (r̃t − rt) (Kt −
∑m

i=1 kit)
+
∑T

t=0 (w̃t − wt) (Lt −m +
∑m

i=1 λit) > 0

 (7)

Agents i = 1, . . . ,m (consumers-workers):

ϕi (p, r,w, (ch,kh,λh)m
h=1 ,K,L)

≡
{

Bi (p, r,w) if (ci,ki,λi) /∈ Ci (p, r,w)
Bi (p, r,w) ∩ [Pi (ci,λi)× Yi] if (ci,ki,λi) ∈ Ci (p, r,w)

}
where Pi is the ith agent’s set of strictly preferred allocations: Pi (ci,λi) ≡{(

c̃i, λ̃i

)
:
∑T

t=0 βt
iui

(
c̃it, λ̃it

)
>
∑T

t=0 βt
iui (cit, λit)

}
.

Agent i = m + 1 (the firm):

ϕm+1 (p, r,w, (ch,kh,λh)m
h=1 ,K,L)

≡


(
K̃, L̃

)
∈ Y × Z :∑T

t=0

[
ptF

(
K̃t, L̃t

)
− rtK̃t − wtL̃t

]
>
∑T

t=0 [ptF (Kt, Lt)− rtKt − wtLt]

 (8)

We observe that ϕi : Φ → 2Φi where

Φ ≡ Φ0 × . . .× Φm+1

Φ0 ≡ P

Φi ≡ Xi × Yi × Zi, i = 1, . . . ,m

Φm+1 ≡ Y × Z

11



and 2Φi denotes the set of subsets of Φi.

Claim 9 ϕi is a lower semi-continuous convex-valued correspondence for i =
0, . . . ,m + 1.

Proof.
(1) Focus first on openness.
ϕ0 has an open graph.
Consider ϕi with i = 1, . . . ,m. Bi is lower semi-continuous and has an open

graph (Claim 7) in Xi × Yi × Zi. Pi (ci,λi) has also an open graph in Xi × Zi,
so Bi (p, r,w) ∩ [Pi (ci,λi)× Yi] has an open graph in Xi × Yi × Zi.

ϕm+1 has an open graph.
(2) Focus now on convexity.
The affinity of the function w.r.t. (p̃, r̃, w̃) in the LHS of the inequality

defining ϕ0 implies the convexity of ϕ0.
The affinity of the modified budget constraint implies the convexity of Bi

for every (p, r,w) ∈ P . The concavity of ui implies the convexity of Pi (ci,λi)
for every (ci,λi) ∈ Xi × Zi. Then Bi (p, r,w) ∩ [Pi (ci,λi)× Yi] is convex and
ϕi is convex-valued for i = 1, . . . ,m.

Concavity of F implies also the convexity of ϕm+1.
Let us simplify the notation

v ≡ (p, r,w, (ch,kh,λh)m
h=1 ,K,L)

v0 ≡ (p, r,w)
vi ≡ (ci,ki,λi) for i = 1, . . . ,m

vm+1 ≡ (K,L)

Lemma 1 (a fixed-point argument) There exists v ∈ Φ such that either ϕi (v) =
∅ or vi ∈ ϕi (v) for i = 0, . . . ,m + 1.

Proof. Φ is a non-empty compact convex subset of RmT+(5+2m)(T+1). Each
ϕi : Φ → 2Φi is a convex (possibly empty) valued correspondence whose graph
is open in Φ× Φi (Claim 9). Then the Gale and Mas-Colell (1975) fixed-point
theorem applies.

We observe the following.
(1) By definition of ϕ0 (the inequality in (7) is strict): (p, r,w) /∈ ϕ0 (v).
(2) (ci,ki,λi) /∈ Pi (ci,λi) × Yi implies that (ci,ki,λi) /∈ ϕi (v) for i =

1, . . . ,m.
(3) By definition of ϕm+1 (the inequality in (8) is strict): (K,L) /∈ ϕm+1 (v).
Then, for i = 0, . . . ,m + 1, vi /∈ ϕi (v).
According to Lemma 1, there exists v̄ ∈ Φ such that ϕi (v̄) = ∅ for i =

0, . . . ,m + 1, that is, there exists v̄ ∈ Φ such that the following holds.

12



i = 0. For every (p, r,w) ∈ P ,

T∑
t=0

(pt − p̄t)

(
m∑

i=1

[
c̄it + k̄it+1 − (1− δ) k̄it

]
− F

(
K̄t, L̄t

))

+
T∑

t=0

(rt − r̄t)

(
K̄t −

m∑
i=1

k̄it

)
+

T∑
t=0

(wt − w̄t)

(
L̄t −m +

m∑
i=1

λ̄it

)
≤ 0 (9)

i = 1, . . . ,m.
(
c̄i, k̄i, λ̄i

)
∈ Ci (p̄, r̄, w̄) and Bi (p̄, r̄, w̄)∩

[
Pi

(
c̄i, λ̄i

)
× Yi

]
=

∅ for i = 1, . . . ,m. Then, for i = 1, . . . ,m, (ci,ki,λi) ∈ Ci (p̄, r̄, w̄) =
Bi (p̄, r̄, w̄) implies

T∑
t=0

βt
iui (cit, λit) ≤

T∑
t=0

βt
iui

(
c̄it, λ̄it

)
(10)

i = m + 1. For t = 0, . . . , T and for every (K,L) ∈ Y × Z, we have∑T
t=0 [p̄tF (Kt, Lt)− r̄tKt − w̄tLt] ≤

∑T
t=0

[
p̄tF

(
K̄t, L̄t

)
− r̄tK̄t − w̄tL̄t

]
.

This is possible if and only if

p̄tF (Kt, Lt)− r̄tKt − w̄tLt ≤ p̄tF
(
K̄t, L̄t

)
− r̄tK̄t − w̄tL̄t (11)

for any t (simply choose (K,L) such that (Ks, Ls) =
(
K̄s, L̄s

)
if s 6= t, to prove

the necessity, and sum (11) side by side to prove the sufficiency).
In particular, we have

p̄tF
(
K̄t, L̄t

)
− r̄tK̄t − w̄tL̄t ≥ 0 (12)

Proposition 2 At the prices (p̄t, r̄t, w̄t),
(
K̄t, L̄t

)
satisfies the zero-profit con-

dition:
p̄tF

(
K̄t, L̄t

)
= r̄tK̄t + w̄tL̄t (13)

Proof. From (12), we know that p̄tF
(
K̄t, L̄t

)
− r̄tK̄t − w̄tL̄t ≥ 0. Suppose,

by contradiction, that p̄tF
(
K̄t, L̄t

)
− r̄tK̄t − w̄tL̄t > 0. Choose a new vector

of inputs
(
µK̄t, µL̄t

)
with µ > 1 (this is possible if bounds BK and BL are

sufficiently large). The constant returns to scale imply

p̄tF
(
µK̄t, µL̄t

)
− r̄tµK̄t − w̄tµL̄t = µ

[
p̄tF

(
K̄t, L̄t

)
− r̄tK̄t − w̄tL̄t

]
> p̄tF

(
K̄t, L̄t

)
− r̄tK̄t − w̄tL̄t

against the fact that inequality (11) holds for every (Kt, Lt) ∈ [0, BK ]× [0, BL].

Claim 10 If p̄t > 0, then K̄t −
∑m

i=1 k̄it ≥ 0 and L̄t −
∑m

i=1 l̄it ≥ 0.
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Proof.
(1) We notice that, from (9), if the demand for capital is less than the supply

of capital: K̄t <
∑m

i=1 k̄it, we have r̄t = 0. But, since p̄t > 0, r̄t = 0 implies
K̄t = BK and, so, BK = K̄t <

∑m
i=1 k̄it ≤ A < BK , a contradiction. Then

K̄t −
∑m

i=1 k̄it ≥ 0 for t = 0, . . . , T + 1.
(2) Similarly, we notice that, if the labor demand is less than the labor

supply: L̄t <
∑m

i=1 l̄it, we have w̄t = 0. But w̄t = 0 implies L̄t = BL and, so,
BL = L̄t <

∑m
i=1 l̄it ≤ m < BL, a contradiction. Then L̄t −

∑m
i=1 l̄it ≥ 0 for

t = 0, . . . , T + 1.
Let Z̄t ≡

∑m
i=1

[
c̄it + k̄it+1 − (1− δ) k̄it

]
−F

(
K̄t, L̄t

)
be the aggregate excess

demand at time t. We want to prove that Z̄t = 0.
Assume, by contradiction, that

Z̄t 6= 0 (14)

Claim 11 If Z̄t 6= 0 and ptZ̄t ≤ p̄tZ̄t for every pt with |pt| ≤ 1, then (1) |p̄t| = 1
and (2) p̄tZ̄t > 0.

Proof.
(1) Let us show that −1 < p̄t < 1 leads to a contradiction.
(1.1) If Z̄t > 0, we choose pt such that p̄t < pt < 1 and we find p̄tZ̄t < ptZ̄t,

a contradiction.
(1.2) If Z̄t < 0, we choose pt such that −1 < pt < p̄t and we find p̄tZ̄t < ptZ̄t,

a contradiction.
(2) Clearly, if we choose pt = 0, we have always p̄tZ̄t ≥ 0. Since p̄t = ±1

and Z̄t 6= 0, then p̄tZ̄t 6= 0 and, so, p̄tZ̄t > 0.

Claim 12 If Z̄t 6= 0, then Z̄t > 0 and, hence, p̄t = 1.

Proof. First, we observe that (9) holds also with pt = p̄t for t 6= s and
(rt, wt) = (r̄t, w̄t) for t = 0, . . . , T , that is

(ps − p̄s)

(
m∑

i=1

[
c̄is + k̄is+1 − (1− δ) k̄is

]
− F

(
K̄s, L̄s

))
= (ps − p̄s) Z̄s ≤ 0

for every ps with |ps| ≤ 1. Replacing s by t, we have ptZ̄t ≤ p̄tZ̄t for every pt

with |pt| ≤ 1.
Claim 11 applies. Then |p̄t| = 1 and p̄tZ̄t > 0.
Suppose that the conclusion of Claim 12 is false, that is Z̄t < 0 and, hence,

p̄t = −1. We obtain
∑m

i=1

[
c̄it + k̄it+1 − (1− δ) k̄it

]
− F

(
K̄t, L̄t

)
< 0.

But if p̄t = −1, we have c̄it = Bc. Indeed, if c̄it < Bc for at least one agent,
we can find c̄it < cit < Bc such that

∑T
t=0 βt

iui (cit, λit) >
∑T

t=0 βt
iui

(
c̄it, λ̄it

)
with (ci,ki,λi) ∈ Bi (p̄, r̄, w̄), against the definition of v̄ (see (10)). Then

mBc =
m∑

i=1

c̄it < F
(
K̄t, L̄t

)
+ (1− δ)

m∑
i=1

k̄it −
m∑

i=1

k̄it+1

≤ F

(
m∑

i=1

k̄it,

m∑
i=1

l̄it

)
+ (1− δ)

m∑
i=1

k̄it ≤ F (A,m) + (1− δ) A ≤ A

14



a contradiction.

Proposition 3 The goods market clears: Z̄t = 0, that is

m∑
i=1

[
c̄it + k̄it+1 − (1− δ) k̄it

]
= F

(
K̄t, L̄t

)
Proof. p̄t = 1 implies γ (p̄t, r̄t, w̄t) = 0. In this case,

(
c̄i, k̄i, λ̄i

)
∈ Ci (p̄, r̄, w̄)

implies p̄t

[
c̄it + k̄it+1 − (1− δ) k̄it

]
≤ r̄tk̄it+w̄t

(
1− λ̄it

)
and, therefore, we have

p̄t

m∑
i=1

[
c̄it + k̄it+1 − (1− δ) k̄it

]
≤ r̄t

m∑
i=1

k̄it + w̄t

m∑
i=1

l̄it (15)

Assume, by contradiction, Z̄t 6= 0. Claim 12 implies p̄t = 1 and Z̄t > 0.
This implies, in turn,

p̄t

m∑
i=1

[
c̄it + k̄it+1 − (1− δ) k̄it

]
> p̄tF

(
K̄t, L̄t

)
According to (12), we have also p̄tF

(
K̄t, L̄t

)
≥ r̄tK̄t + w̄tL̄t.

Finally, we know that K̄t ≥
∑m

i=1 k̄it and L̄t ≥
∑m

i=1 l̄it (Claim 10).
Putting together, we have p̄t

∑m
i=1

[
c̄it + k̄it+1 − (1− δ) k̄it

]
> r̄t

∑m
i=1 k̄it +

w̄t

∑m
i=1 l̄it, in contradiction with (15). Thus the inequality (14) is false and

Z̄t = 0.
We observe that

m∑
i=1

c̄it = F
(
K̄t, L̄t

)
+

m∑
i=1

[
(1− δ) k̄it − k̄it+1

]
≤ F

(
m∑

i=1

k̄it,

m∑
i=1

l̄it

)
+ (1− δ)

m∑
i=1

k̄it

≤ F (A,m) + (1− δ) A ≤ A < Bc

We have now to prove that also the capital and the labor markets clear.

Proposition 4 p̄t, r̄t, w̄t > 0, t = 0, . . . , T .

Proof. Let us show that p̄t > 0. Indeed, if p̄t ≤ 0, then c̄it = Bc for every i and∑m
i=1

(
c̄it + k̄it+1

)
≥ Bc > F (A,m) + (1− δ) A ≥ F

(
K̄t, L̄t

)
+ (1− δ)

∑m
i=1 k̄it

in contradiction with Z̄t = 0.
Recall that

p̄tF (K̄t, L̄t)− r̄tK̄t − w̄tL̄t ≥ p̄tF (Kt, Lt)− r̄tK − w̄tLt

for any pair (Kt, Lt) with Kt, Lt ≥ 0. Assume r̄t = 0 and w̄t ≥ 0. In this case,
given Lt > 0, we have p̄tF (Kt, Lt)− r̄tKt − w̄tLt = p̄tF (Kt, Lt)− w̄tLt → +∞
if Kt → +∞, since p̄t > 0: a contradiction. A similar proof works when w̄t = 0
and r̄t ≥ 0.
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Proposition 5 K̄t =
∑m

i=1 k̄it and L̄t =
∑m

i=1 l̄it.

Proof. Since p̄t > 0, we have K̄t ≥
∑m

i=1 k̄it (Claim 10). If K̄t >
∑m

i=1 k̄it,
from (9), we have r̄t = 1 > 0. Then

p̄t

m∑
i=1

[
c̄it + k̄it+1 − (1− δ) k̄it

]
= p̄tF

(
K̄t, L̄t

)
≥ r̄tK̄t + w̄tL̄t

> r̄t

m∑
i=1

k̄it + w̄t

m∑
i=1

l̄it

But
(
c̄i, k̄i, λ̄i

)
∈ Ci (p̄, r̄, w̄) implies p̄t

∑m
i=1

[
c̄it + k̄it+1 − (1− δ) k̄it

]
≤

r̄t

∑m
i=1 k̄it + w̄t

∑m
i=1

(
1− λ̄it

)
, a contradiction. Then K̄t =

∑m
i=1 k̄it.

We know that L̄t ≥
∑m

i=1 l̄it (Claim 10). If L̄t >
∑m

i=1 l̄it, we have w̄t = 1 >
0. Then

p̄t

m∑
i=1

[
c̄it + k̄it+1 − (1− δ) k̄it

]
= p̄tF

(
K̄t, L̄t

)
≥ r̄tK̄t + w̄tL̄t

> r̄t

m∑
i=1

k̄it + w̄t

m∑
i=1

l̄it

But
(
c̄i, k̄i, λ̄i

)
∈ Ci (p̄, r̄, w̄) implies p̄t

∑m
i=1

[
c̄it + k̄it+1 − (1− δ) k̄it

]
≤

r̄t

∑m
i=1 k̄it + w̄t

∑m
i=1

(
1− λ̄it

)
, a contradiction. Then L̄t =

∑m
i=1 l̄it.

We observe that
∑m

i=1 k̄it ≤ A < Bk and
∑m

i=1 l̄it ≤ m < BL.

Proposition 6 The modified budget constraint at equilibrium is a budget con-
straint: γ (p̄t, r̄t, w̄t) = 0 for t = 0, . . . , T .

Proof. p̄t > 0 implies that the modified budget constraint is binding:

p̄t

[
c̄it + k̄it+1 − (1− δ) k̄it

]
= r̄tk̄it + w̄t l̄it + γ (p̄t, r̄t, w̄t)

This gives

p̄t

m∑
i=1

[
c̄it + k̄it+1 − (1− δ) k̄it

]
= r̄t

m∑
i=1

k̄it + w̄t

m∑
i=1

l̄it + mγ (p̄t, r̄t, w̄t)

Proposition 3 implies p̄tF
(
K̄t, L̄t

)
= r̄t

∑m
i=1 k̄it+w̄t

∑m
i=1 l̄it+mγ (p̄t, r̄t, w̄t),

while Propositions 2 and 5 entail p̄tF
(
K̄t, L̄t

)
= r̄t

∑m
i=1 k̄it + w̄t

∑m
i=1 l̄it.

So, γ (p̄t, r̄t, w̄t) = 0.

Corollary 1
(
p̄, r̄, w̄,

(
c̄h, k̄h, λ̄h

)m
h=1

, K̄, L̄
)

is an equilibrium for the finite-
horizon bounded economy ET .
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9 Appendix 2: infinite horizon

We want to prove Theorem 5. From now on, any variable xT
t with subscript t

and superscript T will refer to a period t in a T -truncated economy with xT
t = 0

if t > T . As above, sequences will be denoted in bold type.
Under the Assumptions 1, 2, 3 and 5 an equilibrium(

p̄, r̄, w̄,
(
c̄i, k̄i, λ̄i

)m
i=1

, K̄, L̄
)T

of a truncated economy exists. Under these assumptions, namely separability
and differentiability of preferences, the following necessary conditions hold for
the existence of an equilibrium in a truncated economy.

Claim 13 Under Assumption 5, the equilibrium of a truncated economy satis-
fies the following conditions.

For t = 0, . . . , T :
(1) p̄T

t , r̄T
t , w̄T

t > 0 with p̄T
t + r̄T

t + w̄T
t = 1 (normalization),

(2) (∂F/∂Kt)
(
K̄T

t , L̄T
t

)
= r̄T

t /p̄T
t ,

(3) (∂F/∂Lt)
(
K̄T

t , L̄T
t

)
= w̄T

t /p̄T
t ,

(4) K̄T
t =

∑m
i=1 k̄T

it,
(5) L̄T

t =
∑m

i=1 l̄Tit,
(6)

∑m
i=1

[
c̄T
it + k̄T

it+1 − (1− δ) k̄T
it

]
= F

(
K̄T

t , L̄T
t

)
with k̄T

iT+1 = 0.
For i = 1, . . . ,m, t = 0, . . . , T :
(7) βt

iu
′
i

(
c̄T
it

)
= µ̄T

itp̄
T
t ≥ µ̄T

it+1p̄
T
t+1 (1− δ) + µ̄T

it+1r̄
T
t+1, with equality when

kT
it+1 > 0,

(8) v′i

(
λ̄

T
it

)
≥ u′i

(
c̄T
it

)
w̄T

t /p̄T
t , with equality when λ̄

T
it < 1,

(9) p̄T
t

[
c̄T
it + k̄T

it+1 − (1− δ) k̄T
it

]
= r̄T

t k̄T
it+w̄T

t

(
1− λ̄

T
it

)
with k̄T

it ≥ 0, k̄T
iT+1 =

0 and 0 ≤ λ̄
T
it ≤ 1,

where µ̄T
it is the multiplier associated to the budget constraint at time t.

Proof. See Bosi and Seegmuller (2010) among others.
In the following claims, we omit for simplicity any reference to Assumptions

1, 2, 3 and 5. We suppose that they are always satisfied.
Let us introduce some new variables:

ζ̄
T
it ≡ βt

iu
′
i

(
c̄T
it

)
c̄T
it if t ≤ T , and ζ̄

T
it = 0 if t > T ,

η̄T
it ≡ βt

iv
′
i

(
λ̄

T
it

)
λ̄

T
it if t ≤ T , and η̄T

it = 0 if t > T ,

θ̄
T
it ≡ βt

iv
′
i

(
λ̄

T
it

)
if t ≤ T , and θ̄

T
it = 0 if t > T ,

ϑ̄
T
it ≡ µ̄T

itw̄
T
t if t ≤ T , and ϑ̄

T
it = 0 if t > T ,

(16)

and ε̄T
it ≡ θ̄

T
it − ϑ̄

T
it.

We notice that points (7) and (8) of Claim 13 entail ε̄T
it ≥ 0 and ε̄T

it = 0
when λ̄

T
it < 1.
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Claim 14 For any ε > 0, there exists τ such that, for any s > τ and for any
T ,
∑∞

t=s ζ̄
T
it < ε.

We observe that the critical τ is independent of T .
Proof. We know that, under Assumptions 1 and 2, k̄T

it ≤ A and c̄T
it ≤ A. We

observe that
∑∞

t=0 βt
iui (A) = ui (A) / (1− βi) < ∞. Then, there exists τ such

that
∑∞

t=τ βt
iui (A) < ε. In addition, under Assumption 5,

∞∑
t=τ

βt
iui (A) ≥

T∑
t=τ

βt
iui

(
c̄T
it

)
=

T∑
t=τ

βt
i

[
ui

(
c̄T
it

)
− ui (0)

]
≥

T∑
t=τ

βt
iu
′
i

(
c̄T
it

)
c̄T
it (17)

because of the concavity of ui. Thus, for any ε > 0, there exists τ such that,
for any s > τ and for any T ,

∑∞
t=s ζ̄

T
it < ε.

Claim 15 For any ε > 0, there exists τ such that, for any s > τ and for any
T ,
∑∞

t=s η̄T
it < ε.

As above, the critical τ does not depend on T .
Proof. Since

∑∞
t=0 βt

ivi (1) = vi (1) / (1− βi) < ∞, there exists τ such that∑∞
t=τ βt

ivi (1) < ε. In addition, under Assumption 5,

∞∑
t=τ

βt
ivi (1) ≥

T∑
t=τ

βt
ivi

(
λ̄

T
it

)
=

T∑
t=τ

βt
i

[
vi

(
λ̄

T
it

)
− vi (0)

]
≥

T∑
t=τ

βt
iv
′
i

(
λ̄

T
it

)
λ̄

T
it (18)

because λ̄
T
it ≤ 1 and vi is concave. Thus, for any ε > 0, there exists τ such that,

for any s > τ and for any T ,
∑∞

t=s η̄T
it < ε.

Notice that, as above, the critical τ does not depend on T .

Claim 16 For any ε > 0, there exists τ such that, for any s > τ and for any
T ,
∑∞

t=s ϑ̄
T
itλ̄

T
it < ε and

∑∞
t=s ε̄T

it < ε. In addition, for any T ,
(
ϑ̄

T
itλ̄

T
it

)∞
t=0

∈ l1+

and
(
ε̄T

it

)∞
t=0

∈ l1+.

Notice that the critical τ does not depend on T .
Proof. ¿From (16), we observe that βt

iv
′
i

(
λ̄

T
it

)
λ̄

T
it = ϑ̄

T
itλ̄

T
it+ ε̄T

itλ̄
T
it = ϑ̄

T
itλ̄

T
it+ ε̄T

it

since ε̄T
it = 0 when λ̄

T
it < 1. For any ε > 0, there exists τ such that, for any s > τ ,∑∞

t=s βt
ivi (1) < ε. Thus, according to (18), for any ε > 0, there exists τ such

that, for any s > τ and for any T ,
∑T

t=s

(
ϑ̄

T
itλ̄

T
it + ε̄T

it

)
=
∑T

t=s βt
iv
′
i

(
λ̄

T
it

)
λ̄

T
it <

ε. In particular,
∑∞

t=s ϑ̄
T
itλ̄

T
it < ε and

∑∞
t=s ε̄T

it < ε.

18



From (18), we have also, for any T ,

∞∑
t=0

(
ϑ̄

T
itλ̄

T
it + ε̄T

it

)
≤

∞∑
t=0

βt
ivi (1) = vi (1) / (1− βi)

and, so,
∑∞

t=0 ϑ̄
T
itλ̄

T
it ≤ vi (1) / (1− βi) and

∑∞
t=0 ε̄T

it ≤ vi (1) / (1− βi). Then,

for any T ,
(
ϑ̄

T
itλ̄

T
it

)∞
t=0

∈ l1+ and
(
ε̄T

it

)∞
t=0

∈ l1+.

Claim 17 For any ε > 0 there exists τ such that for any s > τ and any T ≥ s

we have
∑T

t=s ϑ̄
T
it < ε. In addition, for any T ,

T∑
t=0

ϑ̄
T
it <

ui (A) + vi (1)
1− βi

(19)

Proof. Focus now on the sequence of equilibrium budget constraints: r̄T
t k̄T

it +
w̄T

t

(
1− λ̄

T
it

)
− p̄T

t

[
c̄T
it + k̄T

it+1 − (1− δ) k̄T
it

]
≥ 0.

Multiplying them by the multipliers, we obtain, according to the Kuhn-
Tucker method,

µ̄T
itr̄

T
t k̄T

it + µ̄T
itw̄

T
t

(
1− λ̄

T
it

)
− µ̄T

itp̄
T
t c̄T

it − µ̄T
itp̄

T
t k̄T

it+1 + µ̄T
itp̄

T
t (1− δ) k̄T

it = 0 (20)

Summing them over time from t = τ to t = T , we get

µ̄T
iτ r̄T

τ k̄T
iτ + µ̄T

iτ w̄T
τ

(
1− λ̄

T
iτ

)
− µ̄T

iτ p̄T
τ c̄T

iτ − µ̄T
iτ p̄T

τ k̄T
iτ+1 + µ̄T

iτ p̄T
τ (1− δ) kiτ

+µ̄T
iτ+1r̄

T
τ+1k̄

T
iτ+1 + µ̄T

iτ+1w̄
T
τ+1

(
1− λ̄

T
iτ+1

)
− µ̄T

iτ+1p̄
T
τ+1c̄

T
iτ+1

−µ̄T
iτ+1p̄

T
τ+1k̄

T
iτ+2 + µ̄T

iτ+1p̄
T
τ+1 (1− δ) k̄T

iτ+1

+ . . .

+µ̄T
iT r̄T

T k̄T
iT + µ̄T

iT w̄T
T

(
1− λ̄

T
iT

)
− µ̄T

iT p̄T
T c̄T

iT − µ̄T
iT p̄T

T k̄T
iT+1

+µ̄T
iT p̄T

T (1− δ) k̄T
iT

= 0

that is

T∑
t=τ

ϑ̄
T
it −

T∑
t=τ

ϑ̄
T
itλ̄

T
it

−
T−1∑
t=τ

[
µ̄T

itp̄
T
t − µ̄T

it+1p̄
T
t+1 (1− δ)− µ̄T

it+1r̄
T
t+1

]
k̄T

it+1

+µ̄T
iτ p̄T

τ (1− δ) kiτ + µ̄T
iτ r̄T

τ kiτ − µ̄T
iT p̄T

T k̄T
iT+1

=
T∑

t=τ

µ̄T
itp̄

T
t c̄T

it =
T∑

t=τ

βt
iu
′
i

(
c̄T
it

)
c̄T
it =

T∑
t=τ

ζ̄
T
it
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We know that
[
µ̄T

itp̄
T
t − µ̄T

it+1p̄
T
t+1 (1− δ)− µ̄T

it+1r̄
T
t+1

]
kT

it+1 = 0 because ei-
ther µ̄T

itp̄
T
t − µ̄T

it+1p̄
T
t+1 (1− δ)− µ̄T

it+1r̄
T
t+1 = 0 or kT

it+1 = 0 (point (7) of Claim
13). Then

T∑
t=τ

ϑ̄
T
it =

T∑
t=τ

ζ̄
T
it +

T∑
t=τ

ϑ̄
T
itλ̄

T
it

−µ̄T
iτ p̄T

τ (1− δ) kiτ − µ̄T
iτ r̄T

τ kiτ + µ̄T
iT p̄T

T k̄T
iT+1

(21)

From the proof of Claim 14, we know that

T∑
t=τ

ζ̄
T
it ≤

T∑
t=τ

βt
iui (A) = ui (A)

βτ
i − βT+1

i

1− βi

<
βτ

i ui (A)
1− βi

(22)

Thus, for any ε > 0, there exists τ1 such that, for any s > τ1 and for any
T ≥ s,

T∑
t=s

ζ̄
T
it < ε/2 (23)

From the proof of Claim 16, we know also that

T∑
t=τ

ϑ̄
T
itλ̄

T
it ≤

T∑
t=τ

βt
ivi (1) = vi (1)

βτ
i − βT+1

i

1− βi

<
βτ

i vi (1)
1− βi

(24)

Thus, for any ε > 0, there exists τ2 such that, for any s > τ2 and for any
T ≥ s,

T∑
t=s

ϑ̄
T
itλ̄

T
it < ε/2

According to (21), we have that

T∑
t=s

ϑ̄
T
it ≤

T∑
t=s

ζ̄
T
it +

T∑
t=s

ϑ̄
T
itλ̄

T
it + µ̄T

iT p̄T
T k̄T

iT+1

=
T∑

t=s

ζ̄
T
it +

T∑
t=s

ϑ̄
T
itλ̄

T
it (25)

because in the truncated economy k̄T
iT+1 = 0.

Thus, for any ε > 0, there exists τ ≡ max {τ1, τ2} such that, for any s > τ
and for any T ≥ s,

T∑
t=s

ϑ̄
T
it < ε/2 + ε/2 = ε

because in the truncated economy k̄T
iT+1 = 0.
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Finally, from (22), (24) and (25), we have

T∑
t=τ

ϑ̄
T
it ≤

T∑
t=τ

ζ̄
T
it +

T∑
t=τ

ϑ̄
T
itλ̄

T
it < [ui (A) + vi (1)]

βτ
i

1− βi

Taking τ = 0, we obtain (19).

Claim 18 Let ϑ̄
T
i ≡

(
ϑ̄

T
it

)∞
t=0

. There is a subsequence
(
ϑ̄

TS

i

)∞
S=0

which con-

verges for the l1-topology to a sequence ϑ̄i ≡
(
ϑ̄it

)∞
t=0

∈ l1+. The limit ϑ̄i shares

the same properties of the terms ϑ̄
T
i of the sequence, namely, (1) for any ε > 0

there exists τ (the same for all the terms) such that, for any s > τ , we have∑∞
t=s ϑ̄it ≤ ε, and (2)

∑∞
t=0 ϑ̄it ≤ [ui (A) + vi (1)] / (1− βi).

Proof. We apply Claim 17 and we find that, for any ε > 0 there exists τ such
that for any s > τ and for any T , we have

∑∞
t=s ϑ̄

T
it ≤ ε. We observe also that

(19) implies
∑∞

t=0 ϑ̄
T
it ≤ [ui (A) + vi (1)] / (1− βi) for any T . Thus, Lemma 2 in

Appendix 3 applies with a ball B of radius ρ = [ui (A) + vi (1)] / (1− βi).

Claim 19 In the infinite-horizon economy, leisure demand is positive:

lim
T→∞

λ̄
T
it = λ̄it ∈ (0, 1]

Proof. We have θ̄
T
it = ϑ̄

T
it + ε̄T

it with ε̄T
it ≥ 0 and ε̄T

it = 0 if λ̄
T
it < 1.

¿From Claim 17, we know that, for any ε > 0, there exists τ1 such that, for
any s > τ1 and for any T ,

∑∞
t=s ϑ̄

T
it ≤ ε/2.

¿From Claim 16, we know that for any ε > 0, there exists τ2 such that, for
any s > τ2 and for any T ,

∑∞
t=s ε̄T

it < ε/2.
Hence, for any ε > 0, there exists τ ≡ max {τ1, τ2} such that, for any s > τ

and for any T ,
∑∞

t=s θ̄
T
it =

∑∞
t=s ϑ̄

T
it +

∑∞
t=s ε̄T

it < ε. In addition, for any T ,

∞∑
t=0

θ̄
T
it =

∞∑
t=0

ϑ̄
T
it +

∞∑
t=0

ε̄T
it ≤

ui (A) + vi (1)
1− βi

+
vi (1)
1− βi

Let θ̄
T
i ≡

(
θ̄

T
it

)
. Then θ̄

T
i → θ̄i ∈ l1+ for the l1-topology (Lemma 2 in

Appendix 3 applies with ρ = [ui (A) + 2vi (1)] / (1− βi)).
Therefore, for any t, θ̄

T
it converges to θ̄it ∈ (0,+∞). Hence, λ̄

T
it converges to

λ̄it > 0 since vi satisfies the Inada conditions (Assumption 5). Clearly, λ̄it ≤ 1.

Claim 20 In the infinite-horizon economy, the equilibrium prices are positive:
limT→∞ p̄T

t = p̄t ∈ (0, 1), limT→∞ r̄T
t = r̄t ∈ (0, 1), limT→∞ w̄t = w̄t ∈ (0, 1).
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Proof. Focus on prices.
Suppose that limT→∞ p̄T

t = 0. We know that βt
iu
′
i

(
c̄T
it

)
= µ̄T

itp̄
T
t .

If µ̄T
it is bounded, we have limT→∞ u′i

(
c̄T
it

)
= 0 which is impossible because

c̄T
it ≤ A for every T .

Then, limT→∞ µ̄T
it = +∞. However, βt

iv
′
i

(
λ̄

T
it

)
/µ̄T

it = w̄T
t + ε̄T

it/µ̄T
it and

limT→∞ w̄T
t = limT→∞

(
θ̄

T
it/µ̄T

it

)
− limT→∞

(
ε̄T

it/µ̄T
it

)
= 0 (Claim 19).

Since limT→∞ p̄T
t = 0, limT→∞ w̄T

t = 0 and p̄T
t + w̄T

t + r̄T
t = 1, we get

limT→∞ r̄T
t = 1.

We know that µ̄T
it−1p̄

T
t−1 ≥ µ̄T

itp̄
T
t (1− δ)+ µ̄T

itr̄
T
t ≥ µ̄T

itr̄
T
t (point (7) of Claim

13). Then limT→∞ µ̄T
it−1p̄

T
t−1 ≥ limT→∞ µ̄T

itr̄
T
t = +∞.

Similarly, µ̄T
it−2p̄

T
t−2 ≥ µ̄T

it−1p̄
T
t−1 (1− δ) + µ̄T

it−1r̄
T
t−1 ≥ µ̄T

it−1p̄
T
t−1 (1− δ) and

limT→∞ µ̄T
it−2p̄

T
t−2 ≥ limT→∞ µ̄T

it−1p̄
T
t−1 (1− δ) = +∞.

Computing backward, we obtain limT→∞ µ̄T
i0p̄

T
0 = +∞.

If limT→∞ p̄T
0 > 0, since p̄T

0 ≤ 1, then limT→∞ µ̄T
i0 = +∞ and, since

limT→∞ µ̄T
i0w̄

T
0 = ϑ̄i0 < +∞, this implies limT→∞ w̄T

0 = 0. Thus,

0 = p̄0F
(
K0, L̄0

)
− r̄0K0 − w̄0L̄0 = p̄0F

(
K0, L̄0

)
− r̄0K0

Choose L0 > L̄0 in order to obtain a strictly higher profit and a contradiction
with profit maximization.

Let limT→∞ p̄T
0 = 0. We know that u′i (A) ≤ u′i

(
c̄T
i0

)
= β0

i u
′
i

(
c̄T
i0

)
= µ̄T

i0p̄
T
0 .

If limT→∞ µ̄T
i0 < +∞, we have limT→∞ µ̄T

i0p̄
T
0 = 0 and u′i (A) ≤ 0, a contra-

diction.
If limT→∞ µ̄T

i0 = +∞, then limT→∞ µ̄T
i0w̄

T
0 = ϑ̄i0 < +∞ gives limT→∞ w̄T

0 =
0 and limT→∞ r̄T

0 = 1. Focus on the first budget constraint:

p̄T
0

[
c̄T
i0 + k̄T

i1 − (1− δ) ki0

]
= r̄T

0 ki0 + w̄T
0

(
1− λ̄

T
i0

)
Assumption 3 ensures ki0 > 0. In this case, in the limit:

0 = p̄0

[
c̄i0 + k̄i1 − (1− δ) ki0

]
= r̄0ki0 + w̄0

(
1− λ̄i0

)
≥ ki0 > 0

a contradiction. Thus, for every t, p̄T
t → p̄t > 0.

Focus now on r̄t and w̄t. In the limit, p̄tF
(
K̄t, L̄t

)
− r̄tK̄t − w̄tL̄t = 0.

If r̄t = 0, then p̄tF
(
K̄t, L̄t

)
− w̄tL̄t = 0. Fix Lt > 0 and choose Kt large

enough such that p̄tF (Kt, Lt)− w̄tLt > 0, against the equilibrium condition.
If w̄t = 0, then p̄tF

(
K̄t, L̄t

)
− r̄tK̄t = 0. Fix Kt > 0 and choose Lt large

enough such that p̄tF (Kt, Lt)− r̄tKt > 0, against the equilibrium condition.
Thus, p̄t, r̄t, w̄t > 0.

Claim 21 c̄it = limT→∞ c̄T
it ∈ (0,+∞).

Proof. For any t,
∑m

i=1 c̄T
it ≤ A. This implies c̄T

it ≤ A independently on the
choice of T and limT→∞ c̄T

it ≤ A < +∞. In addition, if c̄it = limT→∞ c̄T
it = 0,

then, since u′i
(
c̄T
it

)
w̄T

t /p̄T
t ≤ v′i

(
λ̄

T
it

)
, we obtain +∞ = limT→∞ u′i

(
c̄T
it

)
w̄T

t /p̄T
t ≤

limT→∞ v′i

(
λ̄

T
it

)
, that is λ̄it = limT→∞ λ̄

T
it = 0, a contradiction (see Claim 19).

Then c̄it > 0.
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Claim 22 For any t, limT→∞ K̄T
t = K̄t > 0 and limT→∞ L̄T

t = L̄t > 0.

Proof. We know that
∑m

i=1 k̄it+1 ≥ 0 and that
∑m

i=1 c̄it +
∑m

i=1 k̄it+1 =
F
(
K̄t, L̄t

)
+ (1− δ) K̄t. If K̄t = 0, then c̄it = 0 for every i, a contradiction.

Now, if L̄t = 0, we have r̄tK̄t = 0 and hence K̄t = 0: a contradiction.

Claim 23 limt→+∞ µ̄itp̄tk̄it+1 = 0.

Proof. Let ε > 0. We know that there exists τ such that for any pair
(s, s′) such that s′ > s > τ and for any T > s, we have

∑s′

t=s ζ̄
T
it < ε and∑s′

t=s ϑ̄
T
it

(
1− λ̄

T
it

)
< ε for every i (inequality (23) and Claim 17). Taking the

limit for T → +∞, we get also

ε ≥ lim
T→+∞

s′∑
t=s

ζ̄
T
it =

s′∑
t=s

lim
T→+∞

[
βt

iu
′
i

(
c̄T
it

)
c̄T
it

]
=

s′∑
t=s

βt
iu
′
i (c̄it) c̄it

=
s′∑

t=s

µ̄itp̄tc̄it

(see Claim 21) and

ε ≥ lim
T→+∞

s′∑
t=s

ϑ̄
T
it

(
1− λ̄

T
it

)
=

s′∑
t=s

lim
T→+∞

(
µ̄T

itw̄
T
t

)(
1− lim

T→+∞
λ̄

T
it

)

=
s′∑

t=s

µ̄itw̄t

(
1− λ̄it

)
(see Claims 18 and 19). Since this holds for any s′ > s, we get also

∞∑
t=s

µ̄itp̄tc̄it ≤ ε and
∞∑

t=s

µ̄itw̄t

(
1− λ̄it

)
≤ ε (26)

From the budget constraints, for any s′ ≥ T , we obtain

ε >

s′∑
t=s

µ̄T
itp̄

T
t c̄T

it = µ̄T
isp̄

T
s (1− δ) k̄T

is + µ̄T
isr̄

T
s k̄T

is +
s′∑

t=s

ϑ̄
T
it

(
1− λ̄

T
it

)
≥ µ̄T

isp̄
T
s (1− δ) k̄T

is + µ̄T
isr̄

T
s k̄T

is

(see (21)). Taking the limit for T → +∞, we obtain

µ̄isp̄s (1− δ) k̄is ≤ ε and µ̄isr̄sk̄is ≤ ε

for every s > τ . Thus, lim sups µ̄isp̄s (1− δ) k̄is ≤ ε and lim sups µ̄isr̄sk̄is ≤ ε.
These inequalities hold for any ε > 0. Hence

lim
t→+∞

µ̄itp̄t (1− δ) k̄it = 0 and lim
t→+∞

µ̄itr̄tk̄it = 0 (27)
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Again, from the budget constraint, we have µ̄T
itp̄

T
t k̄T

it+1 = µ̄T
itp̄

T
t (1− δ) k̄T

it +

µ̄T
itr̄

T
t k̄T

it + µ̄T
itw̄

T
t

(
1− λ̄

T
it

)
− µ̄T

itp̄
T
t c̄T

it (see (20)). Taking the limit for T → +∞,

we obtain µ̄itp̄tk̄it+1 = µ̄itp̄t (1− δ) k̄it + µ̄itr̄tk̄it + µ̄itw̄t

(
1− λ̄it

)
− µ̄itp̄tc̄it. We

know that limt→+∞ µ̄itp̄t (1− δ) k̄it = 0 and limt→+∞ µ̄itr̄tk̄it = 0 (see (27)).
We know also that limt→+∞ µ̄itw̄t

(
1− λ̄it

)
= 0 and limt→+∞ µ̄itp̄tc̄it = 0 (see

(26)). Therefore, limt→+∞ µ̄itp̄tk̄it+1 = 0.

Claim 24
(
p̄, r̄, w̄,

(
c̄i, k̄i, λ̄i

)m
i=1

, k̄, L̄
)

is an equilibrium.

Proof. Consider first the firm. For every truncated T -economy a zero profit
condition holds: p̄T

t F
(
K̄T

t , L̄T
t

)
− r̄T

t K̄T
t − w̄T

t L̄T
t = 0. In the limit, for the

infinite-horizon economy: p̄tF
(
K̄t, L̄t

)
− r̄tK̄t − w̄tL̄t = 0, because p̄T

t → p̄t ∈
(0, 1), r̄T

t → r̄t ∈ (0, 1), w̄t → w̄t ∈ (0, 1), K̄T
t =

∑m
i=1 k̄T

it →
∑m

i=1 k̄it =
K̄t < +∞, L̄T

t =
∑m

i=1 l̄Tit →
∑m

i=1 l̄it = L̄t < +∞. If
(
K̄t, L̄t

)
does not

maximize the profit in the infinite-horizon economy, then there exists (Kt, Lt)
such that p̄tF (Kt, Lt) − r̄tKt − w̄tLt > p̄tF

(
K̄t, L̄t

)
− r̄tK̄t − w̄tL̄t = 0 and,

so, a critical τ , such that, for any T > τ , p̄T
t F (Kt, Lt) − r̄T

t Kt − w̄T
t Lt >

p̄T
t F
(
K̄T

t , L̄T
t

)
− r̄T

t K̄T
t − w̄T

t L̄T
t = 0 against the fact that

(
K̄T

t , L̄T
t

)
maximizes

the profit in the T -economy.
Focus on the consumer. Consider an alternative sequence (ci,ki,λi) which

satisfies the budget constraints and the Euler inequalities in the infinite-horizon
economy. We have

∆T ≡
T∑

t=0

βt
i

[
ui (c̄it) + vi

(
λ̄it

)]
−

T∑
t=0

βt
i [ui (cit) + vi (λit)]

=
T∑

t=0

βt
i [ui (c̄it)− ui (cit)] +

T∑
t=0

βt
i

[
vi

(
λ̄it

)
− vi (λit)

]
≥

T∑
t=0

βt
iu
′
i (c̄it) (c̄it − cit) +

T∑
t=0

βt
iv
′
i

(
λ̄it

) (
λ̄it − λit

)
≥

T∑
t=0

µ̄itp̄t (c̄it − cit) +
T∑

t=0

µ̄itw̄t

(
λ̄it − λit

)
We observe that

µ̄itp̄tc̄it − µ̄itw̄t

(
1− λ̄it

)
= µ̄itr̄tk̄it + µ̄itp̄t (1− δ) k̄it − µ̄itp̄tk̄it+1

µ̄itp̄tcit − µ̄itw̄t (1− λit) ≤ µ̄itr̄tkit + µ̄itp̄t (1− δ) kit − µ̄itp̄tkit+1

where the first equality holds because of the Kuhn-Tucker method.
Subtracting member by member, we get

µ̄itp̄t (c̄it − cit) + µ̄itw̄t

(
λ̄it − λit

)
≥

[
µ̄itr̄tk̄it + µ̄itp̄t (1− δ) k̄it − µ̄itp̄tk̄it+1

]
− [µ̄itr̄tkit + µ̄itp̄t (1− δ) kit − µ̄itp̄tkit+1]
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Summing over t, we obtain

T∑
t=0

µ̄itp̄t (c̄it − cit) +
T∑

t=0

µ̄itw̄t

(
λ̄it − λit

)
≥

T∑
t=0

[
µ̄itp̄t (1− δ) k̄it + µ̄itr̄tk̄it − µ̄itp̄tk̄it+1

]
−

T∑
t=0

[µ̄itp̄t (1− δ) kit + µ̄itr̄tkit − µ̄itp̄tkit+1]

We know also that[
µ̄itp̄t − µ̄it+1p̄t+1 (1− δ)− µ̄it+1r̄t+1

]
k̄it+1 = 0[

µ̄itp̄t − µ̄it+1p̄t+1 (1− δ)− µ̄it+1r̄t+1

]
kit+1 = 0

(point (7) in the Claim 13), that is

µ̄itp̄t (1− δ) k̄it + µ̄itr̄tk̄it = µ̄it−1p̄t−1k̄it

µ̄itp̄t (1− δ) kit + µ̄itr̄tkit = µ̄it−1p̄t−1kit

Then

T∑
t=0

µ̄itp̄t (c̄it − cit) +
T∑

t=0

µ̄itw̄t

(
λ̄it − λit

)
=

T∑
t=0

(
µ̄it−1p̄t−1k̄it − µ̄itp̄tk̄it+1

)
−

T∑
t=0

(
µ̄it−1p̄t−1kit − µ̄itp̄tkit+1

)
= µ̄i,−1p̄−1ki0 − µ̄iT p̄T k̄iT+1 −

[
µ̄i,−1p̄−1ki0 − µ̄iT p̄T kiT+1

]
= −µ̄iT p̄T k̄iT+1 + µ̄iT p̄T kiT+1

≥ −µ̄iT p̄T k̄iT+1

Thus limT→+∞∆T ≥ 0 (Claim 23) and

∞∑
t=0

βt
i

[
ui (c̄it) + vi

(
λ̄it

)]
≥

∞∑
t=0

βt
i [ui (cit) + vi (λit)]

Thus
(
c̄i, λ̄i

)
maximizes the consumer’s objective.

10 Appendix 3

Let B (0, ρ) ≡
{
x ∈ l1 :

∑∞
t=0 |xt| ≤ ρ

}
be a ball of l1.

Lemma 2 Let K be a subset of B (0, ρ), which satisfies the property: for any
ε > 0, there exists τ such that for any s > τ and for any x ∈ K,

∑∞
t=s |xt| ≤ ε.

Then K is compact for the l1-topology.
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Proof. Let
(
yT
)

be a sequence in K. B (0, ρ) is a compact set for the product
topology and contains the sequence

(
yT
)
. Thus there exists a subsequence(

yTS
)

which, for the product topology, converges to some y ∈ B (0, ρ).
For any ε > 0, there exists τ such that for any s > τ and for any S,∑∞

t=s

∣∣∣yTS
t

∣∣∣ ≤ ε. Take now any s′ > s. We have, for any s′, for any s > τ and

for any S,
∑s′

t=s

∣∣∣yTS
t

∣∣∣ ≤∑∞
t=s

∣∣∣yTS
t

∣∣∣ ≤ ε. Convergence of
(
yTS

)
for the product

topology implies, for any s′ and for any s > τ ,
∑s′

t=s |yt| ≤ ε. Thus we get, for
any s > τ ,

∑∞
t=s |yt| ≤ ε. Then y ∈ K and K is compact for the l1-topology.
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