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On the existence, efficiency and bubbles
of a Ramsey equilibrium
with endogenous labor supply
and borrowing constraints”

Robert Becker | Stefano Bosit
Cuong Le Van? Thomas Seegmuller

August 30, 2011

Abstract

In this paper, we study the existence of an intertemporal equilibrium
in a Ramsey model with heterogenous discounting, elastic labor supply
and borrowing constraints. Applying a fixed-point argument by Gale and
Mas-Colell (1975), we prove the existence of an equilibrium in a trun-
cated bounded economy. This equilibrium is also an equilibrium of any
unbounded economy with the same fundamentals. Then, we prove the
existence of an equilibrium in an infinite-horizon economy as a limit of a
sequence of truncated economies. On the one hand, our paper generalizes
Becker et al. (1991) because of the elastic labor supply and, on the other
hand, Bosi and Seegmuller (2010) because of a proof of global existence.
Our methodology can be also applied to other Ramsey models with dif-
ferent market imperfections. The issue of bubbles existence and efficiency
is raised at the end of the paper.

Keywords: bubbles, efficiency, Ramsey model, heterogeneous agents,
endogenous labor supply, borrowing constraint.

JEL classification: C62, D31, D91, G10.

1 Introduction

Ramsey (1928) remains the most influential paper in growth literature and an
inexhaustible source of inspiration for theorists. One of the puzzling aspects of
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the model is the so-called Ramsey conjecture: ”... equilibrium would be attained
by a division into two classes, the thrifty enjoying bliss and the improvident at
the subsistence level” (Ramsey (1928), p. 559). This sentence ends the paper
and means that, in the long run, the most patient agents would hold all the
capital, while the others would live at their subsistence level. The Ramsey
conjecture was proved by Robert Becker more than half a century later.

Becker (1980) pioneers a series of works during three decades on the prop-
erties of a Ramsey equilibrium under heterogenous discounting.! He shows the
existence of a long-run equilibrium where the most patient agent holds the cap-
ital of the economy, while the impatient ones consume their labor income. The
existence of the steady state rests on the introduction of borrowing constraints
that prevent agents to borrow against their future labor income.

The complete markets case is considered by other authors. Le Van and
Vailakis (2003) prove that, when individuals are allowed to borrow against fu-
ture income, the impatient agents borrow from the patient one and spend the
rest of their life to work to refund the debt. In addition, their consumption
asymptotically vanishes and there is no longer room for a steady state. The
extension with elastic labor supply, which is pertinent for a comparison with
our paper, is provided by Le Van et al. (2007).

Borrowing constraints are credit market imperfections that change the equi-
librium properties in terms of: (1) optimality, (2) stationarity and (3) mono-
tonicity.

(1) Optimality. Credit market incompleteness entails the failure of the first
welfare theorem. As a matter of fact, it is no longer possible to prove the
existence of a competitive equilibrium by studying the set of Pareto-efficient
allocations as done by Le Van and Vailakis (2003) and Le Van et al. (2007),
among others, in absence of market imperfections.

(2) Stationarity. Under borrowing constraints, there exists a stationary state
where impatient agents consume. The steady state vanishes when these con-
straints are retired: in the complete markets counterpart, Le Van and Vailakis
(2003) and Le Van et al. (2007) show that the convergence of the optimal capi-
tal sequence to a particular stock still holds, but this stock is not itself a steady
state.

(3) Monotonicity. In presence of borrowing constraints, persistent cycles
arise (Becker (1980), Becker and Foias (1987, 1994), Sorger (1994)). To un-
derstand the role of these constraints, it is worthy to compare with similar
models where markets are complete: Le Van and Vailakis (2003) and Le Van
et al. (2007) also find that, under discounting heterogeneity, the monotonicity
property of the representative agent counterpart does not carry over and that
a twisted turnpike property holds (see Mitra (1979) and Becker (2005)). The
very difference with the class of models a la Becker is that the optimal capi-
tal sequence always converges in the long run and, thus, there is no room for
persistent cycles.

What is the reason of persistence? Becker and Foias (1987, 1994) show that

1For a survey on this literature, the reader is referred to Becker (2006).



cycles of period two may occur when capital income monotonicity fails, that is
capital income is decreasing in the capital stock.

Thereby, the Ramsey conjecture holds under perfect competition, but also
under the kind of imperfection represented by financial constraints. However,
the introduction of other forms of imperfections makes this conjecture frag-
ile. Prominent examples are given by distortionary taxation and market power.
Sarte (1997) and Sorger (2002) study a progressive capital income taxation,
while Sorger (2002, 2005, 2008) and Becker and Foias (2007) focus on the strate-
gic interaction in the capital market. They prove the possibility of a long-run
non-degenerated distribution of capital where impatient agents hold capital.

Our paper addresses the difficult question of the existence of an intertempo-
ral equilibrium under borrowing constraints. The usual proof of existence & la
Negishi no longer applies because markets are imperfect.

Becker et al. (1991) have shown the existence of an intertemporal equilibrium
under borrowing constraints with inelastic labor supply. The argument of the
proof rests on the introduction of a tdtonnement map giving an equilibrium as
a fixed point of the map.

Bosi and Seegmuller (2010) provide a local proof of existence of an intertem-
poral equilibrium with elastic labor supply. Their argument rests on the exis-
tence of a local fixed point for the policy function based on the local stability
properties of the steady state.

The novelty of our paper is threefold.

(1) We generalize Becker et al. (1991) by considering an elastic labor supply.

(2) We go beyond Bosi and Seegmuller (2010) by providing a proof of global
existence.

(3) We study the occurrence of bubbles under agents’ heterogeneity and
market imperfections.

We show the existence of an intertemporal equilibrium in presence of market
imperfections by applying a method inspired by Florenzano (1999), a model with
incomplete markets. This method is based on a Gale and Mas-Colell (1975)
fixed-point argument and can be applied in other contexts.

The entire paper is devoted to the proof of existence and is articulated in
three steps.

(1) We first consider a time-truncated economy. Since the feasible alloca-
tions sets of our economy are uniformly bounded, we prove that there exists an
equilibrium in a time-truncated bounded economy by using a theorem by Gale
and Mas-Colell (1975). Actually, this equilibrium turns out to be an equilibrium
for the time-truncated economy.

(2) Second, we take the limit of a sequence of truncated unbounded economies
and we prove the existence of an intertemporal equilibrium in the limit economy.

(3) Third, a definition of bubble is introduced and a condition for equilibrium
efficiency is provided.

Most of the proofs are given in Appendices 1 to 4.



2 Firms

We consider a representative firm with no market power. The technology is rep-
resented by a constant returns to scale production function: F (K, Lt), where
K; and L; are the aggregate capital and the aggregate labor. Profit max-
imization: maxg, r, [p+F (K, Lt) — re Ky — wi Ly, gives OF /0Ky = r/p: and
OF/0L; = w/p;. We introduce the set of nonnegative real numbers: Ry =
{zx € R:x > 0}. Profit maximization is correctly defined under the following
assumption.?

Assumption 1 F': Rf_ — Ry is O, constant returns to scale, strictly increas-
ing and concave. We assume that inputs are essential: F' (0,L) = F (K,0) = 0.
In addition, F(K,L) — 400 when L > 0 and K — 400 or when K > 0 and
L — +oo0.

Let us introduce also boundary conditions on capital productivity when the
labor supply is maximal and equal to m in order to simplify the proof of equi-
librium existence.

Assumption 2 (0F/0K;) (0,m) > 6 and (OF/0K;) (+00,m) < &, where § €
(0,1) denotes the rate of capital depreciation.

3 Households

We consider an economy without population growth where m households work
and consume. Each household 7 is endowed with k;o units of capital at period
0 and 1 unit of leisure-time per period. Leisure demand of agent ¢ at time ¢
is denoted by A;; and the individual labor supply is given by l;; = 1 — ;.
Individual wealth and consumption demand at time ¢ are denoted by k;; and
Cit-

Initial capital endowments are supposed to be positive.

Assumption 3 ko >0 fori=1,...,m.

It is known that, in economies with heterogenous discounting and no bor-
rowing constraints, impatient agents borrow, consume more and work less in the
short run, and that they consume less and work more in the long run to refund
the debt to patient agents. In our model, agents are prevented from borrowing:
kit>0fort=1,2,...andi=1,...,m.

2The shortcut of maximization of an aggregate profit rests on the following argument.
Consider a large number ¢ of firms that share the same technology and have no market power.
Each firm j maximizes the profit psF (kj¢,lj:) — rtkj — welj¢ in every period: ¢t = 0,1,...
This gives OF/0kj; = r¢/pt and OF/0l;; = w¢/py which in turn implies that the ratio kj;/l;¢
is the same across the firms. Let (K¢, L) = (Z;Zl kjt, Z;Zl ljt) be the aggregate solution.

We define an aggregate production function: F (K¢, Lt). Since productivities 0F/0kj; and
OF /0l are homogeneous of degree zero, the aggregate solution is also solution of the aggregate
program: maxg, 1, [PtF (K¢, Lt) — r¢ Ky — weLy].



Each household maximizes a utility separable over time: Z?:o ﬁﬁui (City Nit)s
where 3; € (0,1) is the discount factor of agent i.

Assumption 4 v, : Ri — R is C1, strictly increasing and concave.

4 Definition of equilibrium
We define an infinite-horizon sequences of prices and quantities:

(p7 r,w, (Cia ki7 )‘z):il 7Ka L)

where
(p.r,w) = ((Pr)iZg (re)Zg» (we)i=g) € R x RYY x RY
(Ci7ki, Az) = ((Cit)fio s (klt);)il R ()‘Zt)toio) S Rf x R x Rio
(K, L) = (K)o, (L)2,) € RE x RY
withi=1,...,m.

. m

Definition 1 A Walrasian equilibrium (f),i,v_v, (Ei’ki”_\i>i:1
the following conditions.

(1) Price positivity: py, 7, wy >0 fort =0,1,...

(2) Market clearing:

K, E) satisfies

goods Z [Eit + ki1 — (1—=6) I;:it] =F (I_(t, Et)
i=1
capital : K, = Z it
=1

labor : L;= Zl_“
i=1

fort=0,1,..., wherel;; =1 — )\ denotes the individual labor supply.

(3) Optimal production plans: pF (I_(t,f/t) — 7 K, — wyLy is the value of
the program: max [P+ F (Ky, Lt) — 7t Ky — wiLy|, for t = 0,1,... under the con-
straints Ky > 0 and L; > 0.

(4) Optimal consumption plans: >_,°, Bl (Eit, S\it) is the value of the pro-
gram: maxy_ -, Bl (cit, Nit ), under the following constraints:

budget constraint : P [cit + k41 — (1 — 0) kie] < Fekir + @0 (1 — i)
borrowing constraint : ki1 >0

leisure endowment : 0<X; <1
capital endowment : kg > 0 given
fort=0,1,...



The following claims are essential in our paper.
Claim 1 Labor supply is bounded.

Proof. At the individual level, because l;; = 1 — A;x € [0,1]. At the aggregate
level, because 0 < > 1y <m. =

Claim 2 Under Assumptions 1 and 2, individual and aggregate capital supplies
are bounded.

Proof. At the individual level, because of the borrowing constraint, we have
0 < kit < thzl kht~

To prove that the individual capital supply is bounded, we prove that the
aggregate capital supply is bounded. We want to show that 0 < Y3 kpe <
max {x, Y .~ kio} = A, where z is the unique solution of

z=(1-0)z+ F(z,m) (1)
Since F is C!, increasing and concave, F (0, L) = 0 and
1 -8+ (0F/0K;) (0,m) >1>1—6 + (OF/OKy) (+00,m)
(Assumptions 1 and 2), the solution of (1) is unique. Moreover, x < y implies
(I=0)y+F(ym) <y (2)
We notice that

S kiyr <0 (it thig) < (1=0)> ki +F (Z Kit, th)
i=1 i=1 i=1 =1 =1
(1 — 5) Z kit + F (Z kit,m>
=1 =1

because F' is increasing, the capital employed cannot exceed its aggregate supply
E:il k;; and ZZZI lit < m. Let z; = E;’ll kit. Then, Tir1 < (1 —(5) T +
F (xy,m).

We observe that zp < max{z,z¢o} = A. Therefore, 71 < (1 —6)zo +
F(zg,m) < (1—-06)A+ F(A,m) < A because z < A and, from (2), (1 —
0)A+ F(A,m) < A. Tterating the argument, we find z; < A fort =0,1,... m

IN

Claim 3 Under Assumptions 1 and 2, consumption is bounded.

Proof. At the individual level, we have 0 < ¢ < Y )" cpe.
To prove that the individual consumption is bounded, we prove that the
aggregate consumption is bounded.

Z (Cit + kit+1) S (1 — 5) Zkzt + F (Z kit, m)
i=1 i=1

1=1
(1-0)A+F(Am)<A

m

E Cit

i=1

IN

IN



5 On the existence of equilibrium in a finite-
horizon economy
We consider an economy which goes on for 7'+ 1 periods: t =0,...,T.

Focus first on a bounded economy, that is choose sufficiently large bounds
for quantities:

X; = {(cio, czT) 0<ecy <B)=1[0,B])" " with A< B,
Vi = {(ka,..., ) 0 < kiy < By} =[0,B;]" with A < By,
Zi = {(os-- - hir) 0 < A <1} =10,1]7

Y = {(Ko,.. ) 0< K, <Bg}=[0,Bg]"" with A < Bk
Z = {(LO,..., Ly):0< L < Bp}=[0,B,]""" with m < By,

We notice that kg is given and that the borrowing constraints (inequalities
kit > 0) capture the imperfection in the credit market.>

Let £T denote this economy with technology and preferences as in Assump-
tions 1 to 4 and with X;, Y; and Z; as the ith consumer-worker’s bounded
sets of consumption demand, capital supply and leisure demand respectively
(i=1,...,m), and Y and Z as the firm’s bounded sets of capital and labor
demands respectively.

Proposition 1 Under the Assumptions 1, 2, 8 and 4, there exists an equilib-
TiUm B

(p.%. W, (Ch. k. An),_, . K,L)
for the finite-horizon bounded economy ET .

Proof. The proof is quite long and articulated in many claims (see Appendix
1). m
Focus now on an unbounded economy.

Theorem 4 Any equilibrium of T is an equilibrium for the finite-horizon un-
bounded economy.

Proof. Let (f),f,v_v7 (Eh,l_ql,j\h) K, ) with p;, 7, wy > 0, t = 0,. T, be
an equilibrium of £7.

Let (c;,kq, A;) verify ZtT:O Brau; (city Nig) > Z?:o Bl (Em Xit). We want to
prove that this allocation violates at least one budget constraint, that is that
there exists ¢ such that

Dt [Cit + kizr — (1 — 0) Kig] > Tk + we (1 — Nig) (3)
Focus on a strictly convex combination of (c¢;, k;, A;) and (éi, k;, 5\1-):
cie (v) = e+ (1—7)cu
kie (V) = vk + (1—7) ki (4)
Xie (V) = YA+ (1 —=7) A

3A possible generalization of credit constraints is h; < kj; with h; < 0 given.



with 0 < v < 1. Notice that we assume that the bounds satisfy B, By, Bx > A
and By > m in order ensure that we enter the bounded economy when the
parameter -~y is sufficiently close to 0.

Entering the bounded economy means (c; (7) ,k; (7), A (7)) € X; X Y; X Z;.
In this case, because of the concavity of the utility function, we find

T T T
D Biui (e (1) Xt (1) = D B (eins Aie) + (1 =) D Biui (it Nie)
=0 =0 =0

T
> Zﬁfuz (it Ait)
=0

Since (¢; (7), ki (7) , Ai (7)) € X;xY;x Z; and (f),i,v_v, (éh,Eh, S\h)zlzl K, E)
is an equilibrium for this economy, there exists t € {0, ..., T} such that

D [Cit (7) + Kirpr () — (1= 0) kir (7)] > Tekie (7) + Wi (1= Xig (7))

Replacing (4), we obtain

P (veir + (1 =) Gt + Vhiry1r + (1 =) kigr — (1= 6) [vkie + (1 =) kt])
> 7y (ki + (=) ki) + @ (1= [vAie + (1 =) Ait])

that is

VP [eit + Kirpr — (1= 8) ki) + (1 — ) Py [Cit + kivyr — (1 — 6) ki
>y [ftkit —+ Wy (1 — Azt)] -+ (1 — ")/) [Ft];it —+ wy (1 — j\zt)]

Since p [Eit + Eit-{-l — (1 — 5) Ezt] = ft]%it +wy (1 — j\it)a we obtain (3) Thus
(f), r,w, (Eh, k. Xh);?:l K, IE) is also an equilibrium for this unbounded econ-

omy. W

6 On the existence of equilibrium in an infinite-
horizon economy

In the section, we introduce a separable utility and, for simplicity, we denote
by wu; the utility of consumption and by v; that of leisure. If w; is the utility
defined on both these arguments, we have w; (¢, Ait) = u; (cir) + vi (Nir)-

Assumption 5 The utility function is separable: w; (¢it, Mit) = u; (cit)+v; (Mit),
with u;,v; : Ry — R and u;,v; € C'. In addition, we assume that u; (0) =
v; (0) = 0, u} (0) = v (0) = o0, u} (cit), v (Aie) > 0 for cit, Ay > 0, and that
functions u,v are concave.

Theorem 5 Under the Assumptions 1, 2, 8 and 5, there exists an equilibrium
in the infinite-horizon economy with endogenous labor supply and borrowing
constraints.



Proof. We consider a sequence of time-truncated economies and the associated
equilibria. We prove that there exists a sequence of equilibria which converges,
when the horizon T goes to infinity, to an equilibrium of the infinite-horizon
economy. The proof is detailed in Appendix 2. m

7 Bubbles
Let (f), r,w, (Ei, k;, ;‘l):i1 K, I:) denote an equilibrium.

Claim 6 For any individual i, the equilibrium sequence of multipliers @, =
(Bit) e exists. FOC of point (7) in Claim 14 are satisfied in the limit economy.

Proof. The proof is given in Appendix 4.

Let
it 1Pt+1

HitDt

Since K; > 0 for any ¢, there exists ¢ such that k;y1 > 0 and fi;,p; =
oit1 [Pe+1 (1 —0) 4+ 7411]. We observe that

Gt4+1 = max
7

fhit 11D 1 i 1D 1 _
Mztjl]iwrl < - and uthﬂjtJrl = — if ki1 >0
HitPt 1 =04 pi M Dt 1—0+piiq
Thus ) .
- ity \Cit+1
=max =
= ) 1= 0+ i
Then
l=q(1-30+p)
Let
Qo = 1 (5)
t
Q = J]afort>0 (6)
s=1
Clearly,
Q = 1
! 1
e = —fort >0
Q1 5:1_[1 ey or

Q: is the present value of a unit of capital of period ¢. For any ¢, we obtain:

Qr=Quy1 (1 =8+ pyyq) (7)



and, by induction,
Q = Q

Q1 = Q2(1—0)+Qapy=Qs(1 87+ Qaps (1—03)+ Qapy

Qo = Qi(1-0)+Q1p =Qs(1—0)>+ Qsps (1 —0)> + Qapy (1 — 8) + Q17

that is

Definition 2 We define the fundamental value of capital as

“+o0
o = ZQt[)t (1-— 5)t_1
t=1

The economy experiences a bubble if limp_. 4o Qr (1 — 6)T > 0. Otherwise
(limy_ oo Qr (1 —08)" =0), we say that there is no bubble.

If i = 1 denotes the most patient agent with 8, < 8, for i = 2,...,m, at
the stationary equilibrium, @ coincides with the discount factor of the patient
agent, the only one with k;; > 0 in the long run:

= Lo~ T2 1], -

lt

8 Efficiency

As above, (f), r,w, (cl, ki, A ) i1 K, E) denotes an equilibrium. Following Ma-
linvaud (1953) and Becker and Mitra (2011), we introduce the following defini-
tion.

Definition 3 An equilibrium is efficient if there exists no sequence of total
consumption, capital and labor (Cy, Ky, Ly) which satisfies, for t =0,1,...

Cy+ K — (1= 8) K, = F(Ky, Ly) (8)

(feasibility) with B B
C,>Crandm—Li >m— Ly

fort=0,1,... with at least one strict inequality for consumption or for leisure.
Ky, the aggregate capital endowment, is given.

Proposition 2 Assume that lim; .o, Q; = 0, where Q; is given by (6) and (5).
Then, this equilibrium is efficient.

Proof. The proof is given in Appendix 4. =

10



9 Conclusion

In this paper, we have shown the existence of an intertemporal equilibrium with
market imperfections (borrowing constraints). Applying the fixed-point theorem
of Gale-Mas-Colell, we have proved the existence of an equilibrium in a finite-
horizon bounded economy. This equilibrium turns out to be also an equilibrium
of any unbounded economy with the same fundamentals. Eventually, we have
shown the existence of an equilibrium in an infinite-horizon economy as a limit of
a sequence of truncated economies by applying a uniform convergence argument.

The paper generalizes in one respect Becker et al. (1991) by considering
an elastic labor supply, and, in another respect, Bosi and Seegmuller (2010) by
providing a proof of global existence. Our methodology, inspired by Florenzano
(1999), is quite general and can be applied to other Ramsey models with different
market imperfections.

At the end of the paper, we have addressed the question of occurrence of
bubbles and their efficiency.

10 Appendix 1: finite horizon

Let us prove Proposition 1.
We define a bounded price set:

PE{(p,r,w):71Sptgl,()grtgl,ngtgl,t:O,...,T}

At this stage, we put no restriction on the sign of p;. We will prove later the
positivity of the good price through an equilibrium argument.
Focus now on the budget constraints:

Pt [Cit + kirr — (1 — 0) Kig] < ks + we (1 — Nig)

fort =0,...,7 —1 and pr [c;r — (1 = 6) kir] < rokir + wr (1 — Ni7).
In the spirit of Bergstrom (1976), we introduce modified budget sets:

B; (p,r,w)
(Ciakiy)\i) eX; xY; xZ;:
P [Cit + Kirpr — (1= 0) k] < rmekie 4+ wi (1 — Nig) + v (e, 7, we)
t=0,....T—1
pr lcir — (1 = 0) kir] < rekir +wr (1 — A7) + 7 (pr, 71, W)
C; (p,r,w)

(Ciakiy)\i> eX; XY, xZ;:
Pt [Cit + kigp1r — (1 = 0) kig] < rieks + we (1 — Nig) + v (De, 7, we)
t=0,....T—1
pr [cir — (1 = 9) kir) < rokir +wr (1 — Niv) + v (1, rr, wr)

where 7 (pt, 7, wi) = 1 — min {1, [pe| + r¢ + we}.

Let B; (p,r,w) denote the closure of B; (p,r,w).

11



Claim 7 For every (p,r,w) € P, we have B; (p,r,w) # & and C; (p,r,w) =

Bi (p7 r, W) .
Proof. Without loss of generality, focus on the modified budget constraints of
the first two periods:

Po [Cio + ki1 — (1 — ) kio] < rokio +wo (1 = Aio) + v (po, 70, w0)  (9)
prleii+kio— (1 =0 ka] < rikia+w (1—=X1)+v(p1,r,w)  (10)

We know that -1 <p; <1,0<r, <1,0<w; <1.

(1) Assume that |po| + ro + wo < 1. Then 7y (po, ro, wo) > 0.

Assume B, to be large enough to set ¢;o = (1 — §) k;p and choose ;o = 1 (we
stay in X; x Z;). Then the inequality (9) becomes pok;1 < rokio + v (po, 70, wo)
and it is satisfied if k;; > 0 is sufficiently close to zero.

Focus now on the second period and two subcases.

(1.1) Assume that [p1]| + 71 +wy < 1. Then 7 (p1,7r1,w1) > 0.

If p; < 0, choose ¢;; sufficiently large (assume the upper bound B. to be
large enough) and the inequality (10) is satisfied.

If py > 0, set ¢;1 = kia = 0 and the inequality (10) becomes —p; (1 — §) ki1 <
rikin + w1 (1 — Nj1) + v (p1,71, w1) and it is satisfied. Notice that, in this case,
inequality (10) is satisfied also if k;2 > 0 but sufficiently close to zero.

(1.2) Assume that |p1| +r1 +w; > 1. Then 7 (p1, 71, w1) = 0.

If p; < 0, choose ¢;; sufficiently large (assume the upper bound B. to be
large enough) and the inequality (10) is satisfied.

If p; =0, choose A;; = 0. The inequality (10) becomes 0 < r1k;; + wy and,
since either 71 > 0 or wy > 0, it is satisfied because k;; > 0 (see point (1)).

If p1 > 0, set ¢;1 = kj2 = 0: the inequality (10) becomes —p; (1 — ) ki1 <
r1ki1 +wi (1 — A1) and is satisfied because k;; > 0 (see point (1)) and 6 < 1.
Notice that, in this case, inequality (10) is satisfied also if k;5 > 0 but sufficiently
close to zero.

(2) Assume that |pg| + ro + wo > 1. Then 7 (po, ro, wo) = 0.

If po < 0, assume B, to be large enough to set ¢;o = (1 — 9) k;o and choose
ki1 > 0. Inequality (9) becomes poki1 < rokio + wo (1 — Ajp) and it is satisfied.

If pg = 0, we have either g > 0 or wg > 0. Set A\;o = 0 < k;1. Inequality
(9) becomes 0 < rok;o + wo. We can not exclude the case ro = 0 or wy = 0, but
Assumption 3 ensures that inequality (9) is verified.

If po > 0, set ¢ijp = 0 and 0 < k;; < (1 —9)kip. Inequality (9) becomes
Po [kll — (1 — 5) kzO} < rokio + wo (]. — )\10) and it is satisfied.

Focus on the second period and two subcases.

(2.1) Assume that |p;| + 71 +w1 < 1. Then ~ (p1,7r1,w;) > 0.

The same arguments of point (1.1) apply.

(2.2) Assume that |p1| +r1 +w; > 1. Then 7 (p1,71,w1) = 0.

The same arguments of point (1.2) apply (just replace "see point (1)” with
"see point (2)”).

Thus, we have proved that, for whatever price system (p,r, w) € P, there ex-
ists (c;, ki, A;) € B; (p,r,w). In addition, B; (p,r,w) # & implies C; (p,r,w) =
B; (p,r,w) for every (p,r,w) € P. m
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Claim 8 B; is a lower semi-continuous correspondence on P.
Proof. We observe that B; has an open graph. m
Claim 9 C; is upper semi-continuous on P with closed convex values.

Proof. We remark that the inequalities in the definition of C; are affine and
that XI x Y, x ZI' is a compact convex set. Thus C; has a closed graph with
convex values. ®

In the spirit of Gale and Mas-Colell (1975, 1979), we introduce the reaction
correspondences ¢; (p,r,w, (cp, kn, Ap)j—, . K, L), i = 0,...,m + 1 defined on
Px[x7, (Xp x Y, x Zp)] xY x Z, where i = 0 denotes an ”additional” agent,
1=1,...,m the consumers, and ¢ = m + 1 the firm. These correspondences are
defined as follows.

Agent i = 0 (the ”additional” agent):

®o (pv r,w, (Chv kha Ah)znzl ’K» L)
(p,T, W) e P:
im0 (Bt — pe) (T [eit + kirr — (1= 0) kit) — F (Ky, Ly))
+ ZtT:o (Fe —re) (Ke — >0 kat)
3 (0 —wy) (L — m 4+ 37 Aig) > 0

11)

Agents i = 1,...,m (consumers-workers):

P (pa r,w, (ch; kh7 Ah)lel ) K7 L)

— B1 (p,I‘,W) if (CivkiaAi) ¢ Cz (para W)
- B; (p,r,w) N [P; (ci, Ai) x Yi] if (ci, ki, Ai) € Ci (p, 1, w)

where P; is the ith agent’s set of strictly preferred allocations: P;(c;, A;) =
{(61’; 5\1) : Ztho Biu; (@'t, S\zt) > Ztho Biu; (cit, )\it)}~
Agent i = m + 1 (the firm):
Ormg1 (P 1, W, (Ch, kp, Ap)p K, L)
(f{, E) EY x Z:
= ZtT:O {ptF (f(ta f/t) — K, - wtzt:| (12)
> S e F (Kiy L) — 1Ky — weLy]

We observe that ¢, : & — 2% where

® = Pogx...x Dy

by, = P

P, = X;xY;xZ,i=1,....m
D1 = Y XZ

and 2% denotes the set of subsets of ®;.

13



Claim 10 o, is a lower semi-continuous convez-valued correspondence for i =
0,...,m+1.

Proof.

(1) Focus first on openness.

o has an open graph.

Consider ¢, with i =1,...,m. B; is lower semi-continuous and has an open
graph (Claim 8) in X; x Y; x Z;. P; (c;, A\;) has also an open graph in X; x Z;,
so B; (p,r,w) N [P, (c;, A;) x Y;] has an open graph in X; X Y; x Z;.

©m41 has an open graph.

(2) Focus now on convexity.

The affinity of the function w.r.t. (p,T,w) in the LHS of the inequality
defining ¢, implies the convexity of .

The affinity of the modified budget constraint implies the convexity of B;
for every (p,r,w) € P. The concavity of u; implies the convexity of P; (c;, A;)
for every (c;, A;) € X; x Z;. Then B; (p,r,w) N [P; (c;, A;) X Y;] is convex and
; is convex-valued for i =1,...,m.

Concavity of F' implies also the convexity of ¢,,, ;. ®

Let us simplify the notation

v = (p,r,w, (ChmkhaAh)ZL:l 7K7L)

Vo = (p,r,W)

vi = (c;,ki,A) fori=1,....m
Vm+1 (K7L)

Lemma 1 (a fized-point argument) There exists v € ® such that either ; (v) =
g orv, €, (v) fori=0,...,m+1.

Proof. ® is a non-empty compact convex subset of R7”T+(G+2m)(T+1)  Each
@; + ® — 2% is a convex (possibly empty) valued correspondence whose graph
is open in ® x ®; (Claim 10). Then the Gale and Mas-Colell (1975) fixed-point
theorem applies. m

We observe the following.

(1) By definition of ¢, (the inequality in (11) is strict): (p,r,w) € ¢, (V).

(2) (ci,ki,Ai) € Pi(ci, A;) x Y; implies that (c;, ki, A;) € ¢, (v) for i =
1,...,m.

(3) By definition of ¢, , 1 (the inequality in (12) is strict): (K, L) & ¢,,, 1 (V).

Then, for i =0,...,m+1, v; ¢ @, (v).

According to Lemma 1, there exists v € ® such that ¢, (V) = @ for ¢ =
0,...,m+ 1, that is, there exists v € ® such that the following holds.
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i = 0. For every (p,r,w) € P,

Z (pt — Pt) <Z [Cit + Kity1 — (1= 08) ki) — F (K¢, Ly)

=0 =1
T m T m

+Z ’I"t—Tt K ZE‘ >+Z 111,5) Lt—m—|—Z)\it>
t=0 i=1 i

0 (13)

N——

o+

/\

IN

=1,...,m. (¢, ki, A;) € C; (p,T,w) and B; (p,T, W) N [P; (Ci, A;) x Y;| =
= 1,...,m. Then, for i = 1 i (P, T

fo T
r, w) implies

(P,

po\&

T
ZB Uy Czta it SZ Czt7 (14)
t=0

i =m+1 Fort =0,...,T and for every (K,L) € Y x Z, we have

ZtTZO [pe F (K, Ly) — 7oK — Wi Ly] < Zf:o [ﬁtF (I_{t, I/t) — 7Ky — wt-zt]~
This is possible if and only if

ptF (Kt, Lt) - Fth - ’lI)tLt S ﬁtF (Kt, I/t) - fth — wtit (15)

for any ¢ (simply choose (K, L) such that (K, Ls) = (K, Ly) if s # ¢, to prove
the necessity, and sum (15) side by side to prove the sufficiency).
In particular, we have

peF (K, Ly) — 7Ky — w; Ly > 0 (16)
Proposition 3 At the prices (pg, T, W), (f{t,f/t) satisfies the zero-profit con-
dition:

peF (K, Ly) = 7Ky + we Ly (17)

Proof. From (16), we know that p,F' (Kth) 7K, — wy Ly > 0. Suppose,
by contradiction, that p;F (Kt,f/t) — 7K, — w,Ly > 0. Choose a new vector
of inputs (uf(t,,uf/t) with g > 1 (this is possible if bounds Bx and Bj, are
sufficiently large). The constant returns to scale imply

D (Mkt,ﬂfzt) — Ky —wply = p [ﬁtF (Ktvit) — Ky — wtit]
> P (I_(taf/t) — T Ky — i Ly

against the fact that inequality (15) holds for every (K, L) € [0, Bk] x [0, BL].
[

Claim 11 Ifp; > 0, then Ky — > 1" kit >0 and Ly — > " 1 > 0.
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Proof.

(1) We notice that, from ( 3), if the demand for capital is less than the
supply of capital: K, < El 1 kit, we have 7 = 0. But, since p; > 0, 7+ = 0
implies K; = Bg and, so, Bx = K; < > ki < A < Bg, a contradiction.
Then K, — Z': ki >0fort=0,. T+1

(2) Similarly, we notice that, 1f the labor demand is less than the labor
supply: L < E 1+, we have w; = 0. But w; = 0 implies L, = By, and, so,
B, =1L; < E:" 1 Zt < m < By, a contradiction. Then L; — Zi:l liy > 0 for
t=0,....T+1. =

Let Zt = Z:;l [Eit + ki1 — (1-06) l;:it]jF (f{t, Et) be the aggregate excess
demand at time ¢. We want to prove that Z; = 0.

Assume, by contradiction, that

Z, £ 0 (18)

Claim 12 7Ith #0 and p; Zy < piZy for every py with |pg| < 1, then (1) |ps]| = 1
and (2) ﬁtZt > 0.

Proof.

(1) Let us show that —1 < p, < 1 leads to a contradiction.

(1.1) If Z; > 0, we choose p; such that p; < p; < 1 and we find p;Z; < piZy,
a contradiction.

(1.2) If Z; < 0, we choose p; such that —1 < p; < p; and we find p; Z; < ps Zs,
a contradiction.

(2) Clearly, if we choose p; = 0, we have always piZ; > 0. Since py = £1
and Z; # 0, then p;Z; # 0 and, so, p;Z; > 0. m

Claim 13 If Z; # 0, then Z; > 0 and, hence, p; = 1.

Proof. First, we observe that (13) holds also with p; = p; for ¢ # s and
(re,wy) = (Fe,wy) for t =0,...,T, that is

(ps _ps) (Z [Eis + kis+1 - (1 - 5) kzs] -F (K37Ls)> = (ps _ﬁs) Zs S 0
i=1

for every p, with |ps| < 1. Replacing s by ¢, we have p;Z; < p;Z; for every p;
with |ps| < 1.

Claim 12 applies. Then |p;| = 1 and p;Z; > 0.

Suppose that the conclusion of Claim 13 is false, that is Z; < 0 and, hence,
pr = —1. We obtain y ;" [Eit + ki — (1-96) f%‘t] —F (R’t,l—/t) <0

But if p; = —1, we have ¢;; = B.. Indeed, if ¢;; < B, for at least one agent,
we can find ¢; < ¢z < B, such that ZtT:O ﬁfuz (Cit7 /\zt) > Z?:O ﬂfuz (Eih j\it)
with (c;, ki, A;) € B; (P, T, W), against the definition of ¥ (see (14)). Then

ch - Zéit<F(_ta Z Z it+1

m)+(1—-38)A< A

A

|
N

hE

3.?"
\_/
i Ms ,
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a contradiction. m

Proposition 4 The goods market clears: Z; = 0, that is
Z [Cit + kitg1 — (1 — 8) k| = F (K¢, Ly)
i=1

Proof. p; = 1 implies v (p, 7+, w:) = 0. In this case, (Ei,l_g,xi) € C; (p,T,w)
implies p; [clt + kg — (1 — d) k; } < Pk 410y (1 - 5\ ) and, therefore, we have

m

Dt Z @it + kirp1 — (1 — | <7 Z + Wy Z Lit (19)
i=1 i=1

i=1

Assume, by contradiction, Z; # 0. Claim 13 implies p; = 1 and Z; > 0.

This implies, in turn,
Dt Z [Cit + kity1 — (1= 6) kir] > pF (K¢, Ly)
i=1

According to (16), we have also ptF (K, Lt) > 7 K —|— Wy Ly.

Finally, we know that K, > Yot ki and Ly > Y1 1 (Claim 11).

Putting together, we have p; 21:1 [clt + kity1 — (1 =9) k;lt] > Ty ki +
Wy Y% lig, in contradiction with (19). Thus the inequality (18) is false and
Z;=0. m

We observe that

Zait = F (K L)+ Z kit — Kitg1]
i1 i1
< <kazlit> +(1—5)27ﬁt
i=1 -1 i=1

K3
< F(Am)+(1-60)A<A<B.
We have now to prove that also the capital and the labor markets clear.
Proposition 5 p;, 7, w; >0,t=0,...,T

Proof. Let us show that p; > 0. Indeed, if p; < 0, then ¢;; = B, for every i and
E:n 1 (Czt + k1t+1) Z B,C > F (A, m) + (1 — 6) A Z F (Rt, f’t) + (1 — 6) eril Eit
in contradiction with Z; = 0.

Recall that

ﬁtF([_(tyl_ft) — 7Ky — we Ly > peF(Ky, Ly) — 7 K — W, Ly

for any pair (K, L;) with K;, Ly > 0. Assume 7; = 0 and w; > 0. In this case,
given Lt > O, we have ﬁtF(Kt, Lt) - 7:th - tht == ptF(Kt, Lt) — ’lI}tLt — 400
if K; — 400, since p; > 0: a contradiction. A similar proof works when w; = 0
and >0, =

17



Proposition 6 K; = poy k i+ and Ly = Py 1[

Proof. Since p; > 0, we have K; > >°7" ki (Claim 11). If K; > S0 ki,
from (13), we have 7, =1 > 0. Then

m

Dt Z Gt + kitp1 — (1= 0) kir)] = DuF (K, Ly) > 7Ky + we Ly
i=1
> 7tzifit +wtzizt
i=1 i=1

But (El,l_{l,j\z) € Cz (f),f‘ V_V) 1mphes ﬁt Zz 1 [Czt + thJrl ( - 5) ]_Czt] S
Tey o, K + 0y Zl 1 ( — Zt) a contradiction. Then Kt DOy Eis.

We know that L, > 1" 1;; (Claim 11). If L > Yot i, we have wy =1 >
0. Then
Dt Z [Cit + kity1 — (1= 0) k] = peF (K, L) > 7Ky 4 0 Ly
i=1

m m
> ftzkit +@tzlit
i=1 i=1

But (Ez,l_(l,x ) € C; (p,T,w) implies p; Z;nl [éit + ki1 — (1=96) l_cit] <

Te ooy ki +we Yo 1( - A ) a contradiction. Then Li=>" 1. =
We observe that > " ki <A< By and Y..» Iy <m < Br.

Proposition 7 The modified budget constraint at equilibrium is a budget con-
straint: «y (py, T, wy) =0 fort =0,...,T

Proof. p; > 0 implies that the modified budget constraint is binding:

Dt [Cit + kivyr — (1= 8) kit] = Teki + Wil + v (Dr, 7o, W)

This gives
Dt Z [Cit + kitgr — (1= 8) k] =7 Z kit + Wy Z Lit + my (P, T, Wy)
i=1 i=1 i=1

Proposition 4 implies p, F' (f(t, Lt) =7 Zm ki 40y Zl i bmey (pt, Tt, W),
while Propositions 3 and 6 entail p; F' ( ) =Ty ki + WY i g
SO7 i (ﬁt,ft,’lz)t) =0. m

Corollary 1 (f),f,v_v, (Eh,l_(h,xh);n:l ,I_(,I:) is an equilibrium for the finite-
horizon bounded economy ET .
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11 Appendix 2: infinite horizon

We want to prove Theorem 5. From now on, any variable ] with subscript ¢
and superscript T’ will refer to a period ¢ in a T-truncated economy with x7 = 0
if t > T. As above, sequences will be denoted in bold type.
Under the Assumptions 1, 2, 3 and 5 an equilibrium
— - — (= T XY \m = =\T
(pv r,w, (civ ki; )\i)izl 9 Ka L)
of a truncated economy exists. Under these assumptions, namely separability

and differentiability of preferences, the following necessary conditions hold for
the existence of an equilibrium in a truncated economy.

Claim 14 Under Assumption 5, the equilibrium of a truncated economy satis-
fies the following conditions.

Fort=0,...,T:

(1) pt' 7, wl > 0 with pl + 7] +w] =1 (normalization),

(2) (OF/OK,) (Ki L} ) =7{ /pi ,

(3) (OF/OLy) (K[, L) = of /p{ ,

(4) KT = er;l k?;;

(5) L? = Zzﬂil l__ijfj; _ _ _ _

(6) 3Ly [eh + Ky — (1= 0) k] = F (K{', L) with kip,, = 0.

Fori=1,....m,t=0,...,T:
B (7) 52“2 (EZ;) = ﬂﬁﬁf > ﬂ£+1]5tT+1 (1 —4) + ﬂ£+177tT+17 with equality when
kl. >0,

(8) v} (Xi) > (¢k) wf /pf, with equality when 5\5 <1,

(9) 57 [eh+ Ky — (1= 0)kE) = iTRE+al (1= X3) with S = 0, Ky, =
0 and 0 < 5\5 <1,

where i}, is the multiplier associated to the budget constraint at time t.

Proof. See Bosi and Seegmuller (2010) among others. m

In the following claims, we omit for simplicity any reference to Assumptions
1, 2, 3 and 5. We suppose that they are always satisfied.

Let us introduce some new variables:

(=0 (@)l itt<T, and (=0 ift>T,

ik =) (Ny) Ny ift<T, and 75 =0 ift>T,
0, = Bl (A, ift<T, and 0,=0 ift>T,

ﬂgzﬂﬁwf itt<T, and 19520 ift>T,

(20)

p _ T 5T
and g/, = 0;;, — 9.
We notice that points (7) and (8) of Claim 14 entail €5, > 0 and % = 0
when 5\3; <1
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Claim 15 For any € > 0, there exists T such that, for any s > T and for any
=T
Tz Z:is Cit <e.

We observe that the critical 7 is independent of T
Proof. We know that, under Assumptions 1 and 2, EZTt < A and E£ < A. We
observe that S°7°, Biu; (A) = u; (A) /(1 — B;) < co. Then, there exists 7 such
that Y52 Biu; (A) < e. In addition, under Assumption 5,

oo T T
D Blus(4) = 3 B () = 3264 [t (o) —wi 0]
2 Zﬂzuz 7zt Z; (21)

because of the concavity of u;. Thus, for any £ > 0, there exists 7 such that,
for any s > 7 and for any T, ;7 Zz; <e m

Claim 16 For any € > 0, there exists T such that, for any s > 7 and for any
T,y 2 0k <e.
’ t=s it

As above, the critical 7 does not depend on T'.
Proof. Since 52 Bivi (1) = v; (1) /(1 — B;) < oo, there exists 7 such that
S Biv; (1) < e. In addition, under Assumption 5,

S+ )£
Zﬁ [(A0) A (22)

Y

Y

because ;\Z; < 1 and v; is concave. Thus, for any € > 0, there exists 7 such that,
for any s > 7 and for any T, Y ;o 7}, <. ®m
Notice that, as above, the critical 7 does not depend on T'.

Claim 17 For any € > 0, there exists T such that, for any s > T and for any
_ _ _ _ oo
T, 2?8193;)\3; <eand Y o gL <e. In addition, for any T, (193;)\3;) ell
t=0

and( ) Ell

t=0

Notice that the critical 7 does not depend on T.

Proof. From (20), we observe that 3iv] (5\3;) i = 19“t)\th +5£)\n = 19“)\” + &%

since £, = 0 when 5\3; < 1. For any € > 0, there exists 7 such that, for any s > T,
S Bivi (1) < e. Thus, according to (22), for any ¢ > 0, there exists 7 such

that, for any s > 7 and for any T, Zt s (ﬂltkzt + 5”) = Zths Bio (5\3;) 5\;7,; <
e. In particular, > ;- 19#)\# <eand Y ;2 EL <e.
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From (22), we have also, for any T,

S (T +ER) < DA () =i (1)/ (1 - )

=0 t=0
and, so, Y o, 79?;,5\?; <wv;(1)/(1-p5;) and 3578} < v;(1)/ (1~ ;). Then,
for any T, (ﬂit/\it) €l and (ET)t 0 € . =
t=0

Claim 18 For any e > 0 there exists T such that for any s > 7 and any T > s
we have Zt 19” < e. In addition, for any T,

T
Sl < gl (23)
t=0 g

Proof. Focus now on the sequence of equilibrium budget constraints: 7, kf; +
T
W] (1 - )‘it) p [czt + k@t+1 (1-9) kzﬂ > 0.
Multiplying them by the multipliers, we obtain, according to the Kuhn-
Tucker method,

/J’ztrtTkzt + Nztwt (1 - ) Mztpt Nztpt kzt+1 + Nztpt (1-9) ]—%:/; =0 (24)
Summing them over time from ¢t =7 to t =T, we get
:uz‘r Zkz;' + ﬂz; wr (1 - )‘ ) /J'z;pzj Z; :u’z‘rpr kzj;+1 + /’L'm'p‘r (1 - 6) kir
_ T 7 _ _ ;T _ I S
Fidr 1T kg + g 074 (1 - )‘z‘r+1) — [ 1Pr 41 G 1

T T TT A
~Hir 1Py 1Rir o + HipgaPrin (1= 0) Ky
+...

T

T _T.T T7
+N¢T7”Tsz + MszT (1 )‘iT) — W PTCr — MszTszJrl

+irpr (1= 6) kip
= 0

that is

T T

Z 1927; Z ﬁzt )‘zt

_T_T -T T -T T 11T
- Z [Mitpt — Iip41Pesr (1= 6) — Mit+17"t+1] kit
Hiad by (1= 8) kir + i, 7L ki — ﬁ%ﬁ%i‘%ﬂ

T
= Z:uztﬁf_zj;_zﬂfu;( Z zt_ZCzt
t=1 =T
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We know that [phpf — i 19t (1—06) — ih 1T 1] ki1 = 0 because ei-
ther ul,pl — pdi pfys (1 —06) — il 7 =0 or Kl 1 =0 (point (7) of Claim
14). Then

Dor e
Zﬁn = ZCit +Z’0LtAlt
t=7 t=1 t=T1
—fiiy Py (1= 0) kir — 377 ki + BipDrkiri
(25)
From the proof of Claim 15, we know that
T T T T+1 T
=T t Bi — B; Biui (A)
< bui (A) = u; (A L 2
>oCh £ 3ol () = () P < 5T (26)

Thus, for any € > 0, there exists 77 such that, for any s > 71 and for any
T > s,

T
S G <e)2 (27)
t=s

From the proof of Claim 17, we know also that

GBI Brui(1)
=8 " 1-5

T
Dighis < Zﬂf”z (1) =v; (1) (28)

Thus, for any € > 0, there exists 7o such that, for any s > 75 and for any
T > s,

T - —
ST 0Ny <e/2
t=s
According to (25), we have that
. LT =TT .
Zﬁit < Zcit+zﬂit)‘it+ﬁg;“pgk£“+l
t=s
s
= Z Cie + Zﬁit)‘it (29)

because in the truncated economy k.., = 0.
Thus, for any € > 0, there exists 7 = max {71, 72} such that, for any s > 7
and for any T > s,

T
2{92 <eg/24¢e/2=¢
t=s

because in the truncated economy k. 11 =0.
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Finally, from (26), (28) and (29), we have

T7 T T T ﬂT
D0 € X Gt 2ok < b (4) w72

Taking 7 = 0, we obtain (23). m

Claim 19 Let 19? = (195) . There is a subsequence (&Ts)S which con-
t=0 =0 _
o € l1 . The limit 9; shares

the same properties of the terms 1_931 of the sequence, namely, (1) for any e >0
there exists T (the same for all the terms) such that, for any s > 7, we have

Yt Vi <€, and (2) 3520 Vi < ui (A) +vi (D] /(1= B).

Proof. We apply Claim 18 and we find that, for any € > 0 there exists 7 such

verges for the [*-topology to a sequence ¥; = (19 )

that for any s > 7 and for any T, we have Y .~ 1_93; < e. We observe also that
(23) implies y,2, 19” < [u; (A) +v; (1)] /(1 = B;) for any T. Thus, Lemma 2 in

Appendix 3 applies with a ball B of radius p = [u; (A) +v; (1)] /(1 = 5,). =
Claim 20 In the infinite-horizon economy, leisure demand is positive:

lim Ay = Ay € (0,1]

Proof. We have 8}, = 0, + £, with £ > 0 and % = 0 if \}; < 1.

From Claim 18, we know that, for any € > 0, there exists 71 such that, for
any s > 71 and for any T, > .- {S‘ﬁ <eg/2.

From Claim 17, we know that for any ¢ > 0, there exists 7o such that, for
any s > 79 and for any T, > ;0 &L <e/2.

Hence, for any ¢ > 0 there exists T =max {71, 72} such that, for any s > 7
and for any T, /0 0, = =32, bl + Yo Eh < e. In addition, for any T,

Oo—Tioo— OC_ U; +7)1(1) v; (1)
Zﬁit_;ﬂ Z:a 7, +1_5i

t=0

Let 0, = (93;) Then 8, — 8; € I} for the I'-topology (Lemma 2 in

Appendix 3 applies with p = [u; (4) +2v; (1)] / (1 = 3;))-
Therefore, for any t, @it converges to 0;; € (0, +00). Hence, 5\“ converges to

it > 0 since v; satisfies the Inada conditions (Assumption 5). Clearly, Xie < 1.
[

Claim 21 In the infinite-horizon economy, the equilibrium prices are positive:
limr oo pf = pr € (0,1), imp oo 77 = 7¢ € (0,1), limp_ o0 wy = w; € (0,1).
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Proof. Focus on prices.

Suppose that limp_, p; = 0. We know that B/ (eh) = uhpt.

If i}, is bounded, we have limr_, o u/ (EZ;) = 0 which is impossible because
el < A for every T.

Then, limy_.o fif, = +oo. However, ﬂﬁvg (X;‘:) /il = wl + &L /uk and

limg oo @7 = limg_.o (93; /;ﬁ;) — limg o0 (£5/5%) = 0 (Claim 20).

Since limy_oo p = 0, limp_ @} = 0 and p! + wf + 7 = 1, we get
lim7_ o ’17? =1.

We know that n,_,pt_, > ihpi (1—0)+ phr{ > phrl (point (7) of Claim
14). Then limy_ o 5k pr 1 > limp_ o gL7l = +o0.

Similarly, figy_op{_s > fig—1p{—1 (1= 0) + 17y = iy 1Py (1= 0) and
oo fify_oPf_o > lir— oo fify_1D{_1 (1 —6) = +o00.

Computing backward, we obtain limy ., phpt = +oo.

If imr_oopg > 0, since pi < 1, then limp_ ﬂ% = —+o00 and, since

limy_, 0o fhwd = Y40 < +00, this implies limy_, o wd = 0. Thus,
0= poF (Ko, Lo) — FoKo — wWoLo = poF (Ko, Lo) — FoKo

Choose Ly > Lg in order to obtain a strictly higher profit and a contradiction
with profit maximization.

Let limy_, ﬁo = 0. We know that u (A) < u (ch) = Biu; (ch) = nhpt .

If imp_ oo Mzo < +00, we have hrnT_,oC Mzopo =0 and u} (A) < 0, a contra-
diction.

If limp_, ﬁ% = +o00, then lim7_, o, ﬂ%wg =90 < +00 gives limp_, o ﬁ)g =
0 and lim7_, Fg = 1. Focus on the first budget constraint:

o = 1T
e [c% +EL—(1-9) kiO] = g kio + wa (1 — /\iO)
Assumption 3 ensures k;o > 0. In this case, in the limit:
0= po [Gio + kix — (1 — 8) kio] = Fokio + wo (1 — Xig) > kio > 0

a contradiction. Thus, for every t, p — p; > 0.
Focus now on Ty and We. In the llmlt, ﬁtF (Kty Et) — ’/’_th — wtit =0.
If 7, = 0, then pF (Kt,it) —w;L; = 0. Fix L, > 0 and choose K, large
enough such that p,F (K¢, L) — w. Ly > 0, against the equilibrium condition.
If w; = 0, then p,F (Kt,ﬂt) — 7K, = 0. Fix K; > 0 and choose L; large
enough such that p.F' (K¢, L) — 7 K > 0, against the equilibrium condition.
ThU.S, Py Te, Wy > 0. W

Claim 22 ¢; = limp_, ¢ € (0, +00).

Proof. For any t, Zz 1 zt < A. This implies ¢}, < A independently on the
choice of T and lim7_, o clt < A < +oo. In addition, if ¢;; = limp_, 4 c;"; =0,

then, since u} (¢4) @f /p{ < v} (5\5), we obtain +o00 = limy_.o u} (¢}) Wl /pf <
limy_, o v} (5\2;), that is A\jy = limy_, o ;\Z; = 0, a contradiction (see Claim 20).
Then ¢;; > 0. =
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Claim 23 For any t, limp_ o I_(tT =K, >0 and limp_ o E%F =1, >0.

Proof. We know that > ;o  kyt1 > 0 and that Yoo & + Doy kip1 =

F (Kt,Lt) (1-9) K. If K, = 0, then ¢, = 0 for every i, a contradiction.
Now, if L; = 0, we have 7 K; = 0 and hence K; = 0: a contradiction. m

Claim 24 limt*,+oo p’itﬁtki“rl =0.

Proof. Let ¢ > 0. We know that there exists 7 such that for any pair
(s,s') such that s’ > s > 7 and for any T' > s, we have Y ;__ EZT; < ¢ and
Z;;S 195 (1 - X?;) < ¢ for every i (inequality (27) and Claim 18). Taking the

limit for T'— 400, we get also

lim Z *Z hm tu g (Cit) G
T 00 Czt [ zt ﬂ m‘ it
S
= Zﬁitﬁt@'t
t=s

(see Claim 22) and

o)
Vv

e > lim Zﬂlt( it)z s lim (ﬂﬁth) (1_ lim ’\£>

T—+o00
t=s

= Zﬂit@t (1 - j\it)
t=s
(see Claims 19 and 20). Since this holds for any s’ > s, we get also
> hgpicis <€ and > iy (1= Aig) <e (30)
From the budget constraints, for any s’ > T, we obtain
e > Z ﬂz;pzéz; = /],zz;ps ( 6) kT + /’Lzs ZkT + Zﬁzt ( it)

> ﬁi;ﬁs (1= 0) ki + i K

(see (25)). Taking the limit for 7" — 400, we obtain

HisDs (1-9) Eis < e and ﬂisfskis <e

for every s > 7. Thus, limsup, fi,,ps (1 — 9) ks < e and lim sup, ﬂisfSEiS < e.
These inequalities hold for any € > 0. Hence

m fiypy (1 —6) kit =0 and m iy Tekie = 0 (31)
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Again, from the budget constraint, we have },pf k%, = pkpf (1 —6) k% +
phrl kL + phwl (1 - S\Z;) — ukpl el (see (24)). Taking the limit for T — +o0,
we obtain iz pkitr1 = figy D (1 — 8) kit + [igyTekit + gy (1 — Xit) — [y PeCit. We

know that limt_,+oo Iaitﬁt (1 - 5) I_Cit = 0_ and limt_,+oo ﬂitﬂl;:u =0 (See (31))

We know also that lim;_, iy Wy (1 — )\it) =0 and limy—, o 1Pt = 0 (see
(30)). Therefore, limy—, 4 oo [i;;Ptkit+1 = 0. ®

Claim 25 (f),i,v_v, (Ei,l_q,jxi):}; .k, I:) s an equilibrium.

Proof. Consider first the firm. For every truncated T-economy a zero profit
condition holds: pf F (Rf,EtT) — 'K —wl'LT = 0. In the limit, for the
infinite-horizon economy: p;F' (f(t, Et) — 7K, — w,L; = 0, because ﬁtT — Py €
(071)7 7:? — Ty € (0a1)7 Wy — Wy € (011)7 K—tT = Z?il ];;17; - Z;ﬂ:l ]_fit =
Ky < 4oo, LT = ¥ 08 — Y7 1y = Ly < 4oo. If (K, L;) does not
maximize the profit in the infinite-horizon economy, then there exists (K, Ly)
such that ]jtF (Kt,Lt) — ’Fth — ’LZItLt > f)tF (Kt,it) — ’fth — ’lI]tI/t =0 and,
so, a critical 7, such that, for any T > 7, p! F (K, L) — 7t Ky — wl' Ly >
pLF (K'tT, E?) — I KI' —w!l' LT = 0 against the fact that (f{f, E?) maximizes
the profit in the T-economy.

Focus on the consumer. Consider an alternative sequence (c;, k;, A;) which
satisfies the budget constraints and the Euler inequalities in the infinite-horizon
economy. We have

Ar

>
t=0
T —
> RaePe (ot — i) + D s (Nt — Air)

t=0 t=0

‘We observe that

fiygDrCit — By @r (L= Nit) = BggTikie + figgDe (1= 6) kir — fgyDekir
fiDeCit — By We (1= Nig) < figyTekie + fyebe (1 — 6) kit — fyyDekira
where the first equality holds because of the Kuhn-Tucker method.
Subtracting member by member, we get

TPt (Cit — cit) + Rap@e (Nie — Ait)
> [BTikie + b (1= 6) Kir — fgyDekiry1]
— ([ Tekis + iy De (L — 0) kit — [y Dekitr1]

26



Summing over ¢, we obtain

T T
Z [Pt (Cit — cit) + Z Ty e (Nie — Ait)
=0 =0

T
[713Pe (1 = 8) kit + Ry Tikir — RygDekieia ]
=0

Y

T
= [BaePr (1= 0) kig + Py Tekin — [igyPikis 1]
0

t—
We know also that
(TPt — Ty 1Der1 (1= 8) — [y 1 Tea1 | kivyr =
[Pt — Ty 1 D1 (1= 06) — [y 1 Tegr | kieyr =
(point (7) in the Claim 14), that is

Bigbe (L= 8) kir + [y Tekie = Hyy_1De—1kit
Riebe (1= 6) kig + figTekie = [iy_1Di—1kit
Then
T
ﬂ tpt (Czt - Czt + Z //thwt /\zt - /\zt)
=0

Sl

T
(Rit—1Pe—1kis — BagDekirs1) — Y (Big—1Dr—1kie — fyPekivsn)
¢ =0

I
=3

= [iy_1P—1kio — fyrprkire1 — [ _1P—1kio — RepPrkiri1]
= —pprkirsr + fipPrkirs1
> —lyrPprkiT1

Thus limr_, 1 o, Ar > 0 (Claim 24) and

Zﬁ [ (Czt)'i‘ﬂz zt Zﬁ (cit) + vi (Nig)]
t=0 t=0

Thus (Ei, /\i) maximizes the consumer’s objective. m

12 Appendix 3

Let B(0,p) = {x €' : 32 |2:| < p} be a ball of I*.

Lemma 2 Let K be a subset of B(0,p), which satisfies the property: for any
e > 0, there exists T such that for any s > 7 and for any x € K, Y2 |zy| < e.
Then K is compact for the I*-topology.
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Proof. Let (yT) be a sequence in K. B (0, p) is a compact set for the product
topology and contains the sequence (yT). Thus there exists a subsequence
(yTS) which, for the product topology, converges to some y € B (0, p).

For any € > 0, there exists 7 such that for any s > 7 and for any S,

>
for any S, E‘;;S

ytTS‘ < &. Take now any s’ > s. We have, for any &', for any s > 7 and

<.

topology implies, for any s’ and for any s > T, Zf;s |y:] < e. Thus we get, for
any s > 7, > . |y:] <e. Theny € K and K is compact for the [*-topology. m

yi°| < e. Convergence of (y”) for the product

Ts
Yt

13 Appendix 4

Let us prove Claim 6

Proof. For any truncated economy, the vector of equilibrium multipliers (zz%;) tT:o

exists and satisfies pY, = Bl (¢h) /bl (see point (7) in Claim 14). Since
limp_ ooy = & € (0,400) and limr_ .o pf = p; € (0,4+00), we obtain
also A o

Biu; (Cit) i (Cit) e (

M, = lim — = —
LU e p? Dy

0, +00)
In addition, we obtain from point (7) in Claim 14:

o . _T_T
e = lim (i)

Y

TEY_EOO (ﬂ£+1 [152;1 (1-6)+ 77?—&-1]) = [yt (P41 (1 = 0) + Feqa]
because imr_, 4o il = jiz; € (0, 400).

If limpyoo k. = kigy1 > 0, then there exists S such that, for any
T > 8, kjyy > 0 and pfpf = @y [P (1—0) +7{,]. Thus, fip =
[y [Pea1 (1= 6) + g ] if Kijyr > 0.

Summing up, the FOC of point (7) in Claim 14 are satisfied in the limit
economy:

Lpe = Biug (Gir)
Lt > TigiPear (1— 6+ pyyq)
LDt = Ty Pea1 (1 =6+ pyyy) if Kiggr >0

where p, =7;/p;. ®

Let us prove now Proposition 2
Proof. Assume that such a sequence exists. Let w; = w;/p;. We have just to
show that

that is a contradiction.
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It is enough to prove that feasibility and FOC imply

T T m m
D Q(Ci—C)+ ) Qo (Z Xt = )\it>‘| > —QrKri (32)
=0 =0 i=1 i=1

Since capitals are uniformly bounded above, the result follows from limz_, o, Q7 =
0.
Let us prove inequality (32). Using (8), we find

Ar

il
i M%

@\

Q

|

9}

_l’_
M=

O

§\
—
L

3/\

|
NE

>
~

t=0
T
- Z Qi (Ly — Ly)
Tf_O
> > Qi [Fi (Ki, Ly) (Ky — Ky) + Fr (Ki, L) (L — Ly)]
= T T
+(1-9) ZQt (K:— K;) - Z Qt (Kir1 — Kipa)
: t=0 t=0
- Z Qo (Lt - Lt)
Tt:o :
= ZQ_t (5, (K¢ — K¢) + @y (Le — Ly)| — Z Qiwy (L — Ly)
t=0 t=0

because Fg (K, Ly) = p, and Fy, (K;, L;) = @, (see points (2) and (3) in Claim
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14). Noticing that Ky = Ky and replacing (7), we get:
— — T — —
Ar > Qo(1—0+p) (Ko—Ko) +> Qi(1—6+p,) (K — K)
t=1
T — —
> Qi (i1 — Kipa)
t=0
T-1 )
= Z Qa1 (1 =04 p,41) (Kip1 — Kiy1)
t=0
T-1 o
=Y Qi(Kiy1 — Kiy1) — Qr (K1 — Kri)
t=0
-1 - o
> (Qi+1 (1 =64 p111) — Qi) (K1 — Kiy1) — QrKrpa
t=0
= —QrKr
m
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