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Geographical factors, Growth and Divergence

Nguyen Thang DAO1 and Julio DÁVILA2

Abstract

This paper develops a uni�ed growth model capturing issues of endogenous economic
growth, fertility, and technological progress considering the e�ects of geographical condi-
tions to interpret the long transition from Malthusian stagnation, through demographic
transition to modern sustained growth, and the great divergence in GDP per capita
across societies. The paper shows how the interplay of size of �land� and its �accessi-
bility� and technological progress play a very important role for an economy to escape
Malthusian stagnation and to take o�. Thus di�erences in these geographical factors lead
to di�erences in take-o� timings, generating great divergence across societies.

Keywords: Geographical land, land accessibility, level of technology, human capital,
fertility.

JEL Classi�cation: J11, O11, O33

�The factors we have listed (innovation, economies of scale, education, capital accumulation, etc.)
are not causes of growth; they are growth.� (North and Thomas, 1973, p.2 in The Rise of the Western

World: A New Economic History)

1. Introduction

The long transition from stagnation to sustained growth along with great divergence
across societies is an interesting topic in development economics and has been the
subject of intensive research in recent years. This paper aims at contributing to
the literature a mechanism to interpret the long transition from stagnation, through
demographic transition to modern sustained growth, as well as the great divergence
in GDP per capita across societies. The paper highlights the role of �size of land�
(i.e. the amount of resource suitable for living and production) and its �accessibility�
in supporting an economy in early stage of development to escape stagnation and to
take o�. There exists a set of these geographical factors under which an economy
starting from low initial conditions never escapes stagnation, as well as an other set
guaranteeing a take-o�. The paper shows that di�erences in these geographical factors
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lead to di�erences in take-o� timings, generating great divergence across societies. The
paper also points out a threshold of technological level, which depends positively on
the size of productive land and negatively on population size, that households invest
in education for their children when the technological level exceeds this threshold.

The major portion of human history is marked by the so-called Malthusian stag-
nation in which technological progress and the population growth rate are very small.
Thomas R. Malthus proposed the most basic description of the relationship between
population growth and income in his famous work �An Essay on the Principles of
Population� �rst published in 1798. He is credited with the view that population has
a tendency to outrun the food supply and to be held in check by war, disease, and
starvation. He may have been the �rst to signi�cantly modify his view that population
growth inevitably presses against the food supply (as stated in Gale Johnson, 2000,
p.1). The �rst of two key components in the Malthusian model is the existence of
land which is �xed in supply, implying decreasing returns to scale of all other factors
of production. The second one is a positive e�ect of the living standard on population
growth. According to the Malthusian model, in the absence of technological progress,
the size of population will be self-equilibrating. The living standard will be high when
the size of population is small, and population will grow as a natural result of passion
between the sexes. When size of population is large, the living standard is low and
population will be reduced by the either the intentional reduction of fertility or by
malnutrition, disease, and famine, etc. Furthermore, exogenous increases in resources
will be o�set by increase in population size in the long run. The predictions of the
Malthusian model are consistent with historical facts. For thousands of years, the
living standard was nearly constant and did not di�er considerably across societies.
Estimations from Angus Maddison (1982) show that the growth rate of GDP per
capita in Europe between 500 and 1500 was zero. Lee (1980) shows that the real
wage in England in 1800 was roughly the same to it had been in 1300. Chao (1986)
shows that real wages in China at the end of eighteenth century were even slightly
lower they had been at the beginning of the �rst century. Lucas (1999) argues that
even in the richest countries, the sustained growth phenomenon in living standards is
only a few centuries old. The evolution of population before industrial revolution is
also consistent with the predictions of the Malthusian model. For thousand of years,
the growth rate of population was nearly zero. Massimo Livi-Bacci (1997) estimates
the growth rate of world population from the year 1 to 1750 at around 0.064 percent
per year.

Although the Malthusian model explains well the stagnation of nearly all of hu-
man history, it fails to explain the demographic transition to the regime of modern
sustained growth. The two last centuries are marked by the signi�cant technologi-
cal progress associated with the industrial revolution and the generalization of basic
education. As a consequence, many societies got out of Malthusian stagnation and
experienced a considerable increase in the income per capita and population growth
rate, as well as increases in human capital. These two last centuries are also marked
by the demographic transition leading eventually to a decline in the growth rate of
population. However, many other societies seem still to be trapped in the Malthu-
sian stagnation. The transition from Malthusian stagnation through the demographic
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transition to the modern sustained economic growth and the phenomenon of the great
divergence, as depicted in Figure 1 and Figure 2, have shaped considerably the con-
temporary world economy and needs to be explained.

Figure 1. The evolution of regional income per capita: years 0 - 2000. Source: Maddison (2003)3

Figure 2. Growth of GDP per capita and population: 1500 - 2000. Source: Maddison (2001)4

3Quoted in Galor (2005). According to classi�cation from Maddison, �Western O�shoots� consist of the United
States, Canada, Australia and New Zealand.

4Quoted in Galor (2005)
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2. Related Literature

The modeling of the very long transition from thousands of years of stagnation with
small population size and growth rate, as well as low economic growth, to the modern
regime of large populations and low fertility but sustained economic growth, along
with the subsequent great divergence across countries, are among the most signif-
icant research challenges facing researchers interested in growth and development.
This modeling aims to answer questions like: (i) what does account for the Malthu-
sian stagnation?; (ii) what is the origin of the sudden spurt in growth rates of output
per capita and population?; (iii) what was the cause of the reversal in the positive
relationship between income per capita and fertility that existed throughout most of
human history?; (iv) what triggered the demographic transition? (see Galor (2005),
p.177). Galor and Weil (2000) �rst advanced a uni�ed growth model interpreting
the historical evolution and interaction mechanisms between population, technology,
and output. It encompasses the endogenous transition between three distinct regimes
(from Malthusian stagnation through demographic transition to modern growth) that
have characterized economic development. The authors focus on the two most im-
portant di�erences between these regimes from a macroeconomic viewpoint: (i) the
behavior of income per capita; and (ii) the relationship between the level of income
per capita and the growth rate of population. Galor and Weil (2000) show that
during the Malthusian period, the dynamical system of an economy would be char-
acterized by a conditional Malthusian equilibrium. Galor and Weil assume that the
driving forces for technological progress are the average level of education and the
size of population. Technological progress appears nonetheless even when education
is zero and population is small. So, eventually, the dynamical system would make
the Malthusian equilibrium vanish endogenously, leaving the arena to the gravitation
forces of the modern growth regime and permitting the economy to take o� and to
converge to a modern steady state growth. This model explains well the evolutions of
population, technology, and output for societies in Western Europe and many other
societies in the world during last two thousand years. Building on this seminal work
of Galor and Weil, several papers have tried to merge within a single framework the
change of regimes through demographic transition to answer the questions above. An
incomplete list of papers includes Boucekkine et al. (2002, 2007), Doepke (2004), Ga-
lor and Moav (2002), Hansen and Prescott (2002), Jone (2001), Kogel and Prskawetz
(2001), Lagerlof (2007), Lucas (2002), Strulik (2003), Strulik and Weisdorf (2009),
Tamura (2002), and Weisdorf (2004). Since technological progress still appears even
when education is zero and the size of population is small, all societies eventually
escape stagnation to converge to a modern steady state growth. However, in reality,
some societies show no sign of escaping the stagnation on their own, in particular
small and isolated societies. Also, Galor and Weil (2000) does not explain the great
divergence in income per capita across countries in the last two centuries.

A uni�ed growth modeling also needs to answer the fundamental question: what
are fundamental causes of economic growth? According to Acemoglu (2009, p.109),
in explaining cross-countries income di�erences, any explanation relying simply on
technology, physical capital, as well as human capital di�erences across countries is,
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at some level, incomplete. Acemoglu argues that if technology, physical capital, and
human capital are so important in understanding di�erences in the wealth of nations
and if they can account for many-fold di�erences in per capita income across countries,
then why some countries do not improve their technology, accumulate physical capital,
and invest in human capital as much as others do? So there should be other and
deeper reasons that are referred as fundamental causes of economic growth.

So what could these fundamental causes be? Innumerable causes of economic
growth have been proposed in the literature by economists, historians, and social
scientists. Acemoglu (2009) classi�es the major candidates into four categories of
hypotheses: (i) the luck hypothesis, (ii) the geography hypothesis, (iii) the culture
hypothesis, and (iv) the institutions hypothesis. In this paper, we focus on the ge-
ography hypothesis. Geography refers to all factors that are imposed on individuals
as part of the physical, geographic, and ecological environment in which they live.
The geography hypothesis, �rst and foremost, is the fact that not all regions of the
world are equally opt for living and production. Nature, that is, the ecological and
geographical environment of nations may play a major role in their economic experi-
ences. There are at least three main branches of geography hypothesis, each empha-
sizing di�erent mechanism for how geography a�ects prosperity. The �rst one and
also the earliest one is proposed by Montesquieu in 1748. He believed that climate,
in particular heat, shaped human attitudes and e�ort, and through this channel, it
a�ects both economic and social outcome. The second one, which is developed by
Gunnar Myrdal, emphasizes the impact of geography on the technologies available to
a society, especially in agriculture. Myrdal (1968, p.2121) wrote: �Serious study of the
problems of underdevelopment should take into account the climate and its impacts on
soil, vegetation, animals, humans and physical assets - in short, on living conditions
in economic development�. The third variant of the geography hypothesis, which is
proposed by Je�erey Sachs, links poverty in many areas of the world to their disease
burden, emphasizing that �the burden of infectious disease is higher in the tropics
than in the temperate zones� (Sachs, 2000, p.32). In our paper, the geographical
factor is likely closer to the second version of geography hypothesis.

In the widely popular book �Guns, Germs, and Steel: The Fates of Human Soci-
eties�, Jared Diamond (1997) provides a historical account along with research results
from other sciences such as biology, geography, archeology, epidemiology, etc., to ex-
plain why the world becomes so unequal across people communities. And why some
regions, peoples, and cultures developed more quickly than the others. Diamond
pushes the series of causes and consequences back to 13,000 years ago to reach a con-
clusion that the origin of great divergence is due to initial di�erences in geographical
and biological conditions. Like espousing the second view of geography hypothesis,
he argues that geographical di�erences between Americas and Eurasia determined the
timing and nature of settled agriculture and, by means of this channel, shaped whether
societies have been able to develop complex organizations and advanced civilian and
military technologies. Although whether historical studies of human societies can be
pursued as scienti�cally is still a controversy, the work of Diamond depicts the most
general picture of human history during the last 13,000 years and shows a way for
other sciences to develop theories of development.
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Gallup et al. (1999) address the complex relationship between geography and
economic development. They show the ways in which geography may matter growth
directly, controlling for economic policies and institutions, as well as the e�ects of
geography on institutions and policy choices. They �nd that climate and location of a
country have large e�ects on income levels and income growth, through their e�ects on
disease burdens, intrinsic agricultural productivity, and transport cost. Furthermore,
they show that geography seems to be a factor for the choice of economic policy itself.

Ashraf and Galor (2011) provide a mechanism linking exogenous e�ect of geograph-
ical isolation on cultural diversity a�ecting creation and accumulation of knowledge to
explain the asymmetric evolutions across societies. They show that societies charac-
terized by less geographical vulnerability to cultural di�usion bene�ted from enhanced
assimilation, lower cultural diversity, and more intense accumulation of society-speci�c
human capital. So, these societies were more e�cient with respect to their production-
possibility frontiers and �ourished in the agricultural stage of development. However,
the lack of cultural di�usion diminishing abilities of these societies in adapting to a
new technological paradigm, which delayed their industrialization and, hence, their
take-o� to sustained growth regime. Their empirical analysis shows that (i) geograph-
ical isolation prevalent in pre-industrial period has had a persistent negative impact
on the extent of contemporary cultural diversity; (ii) pre-industrial geographical iso-
lation had a positive impact on economic development in the agricultural stage but
has had a negative impact on income per capita in the course of industrialization;
and (iii) cultural diversity has had a positive impact on economic develpopment in
the industrialization process.

Of course, geography is not everything in explaning the divergence across countries.
But from previous research in the literature, geography seems to play a crucial role in
the early stages of development for an economy to escape from stagnation and to take
o�. Building on this rich literature, this paper reconsiders the role of geographical
factors to interpret the long transition from stagnation to modern sustaine growth, as
well as interpret the divergence across societies. This paper di�ers from the literature
by highlighling the role of geographical factors in guaranteeing a su�ciently large size
of population to make technology grow, so that di�erences in geographical factors
lead to di�erences in take-o� timings, generating divergence.

3. The model

We consider an overlapping generations economy in which each agent lives for two
periods, say childhood and adulthood. In each period the economy produces a single
homogenous �nal good by using human capital a factor of production. The produc-
tion process is harmful for the health of workers making them pay for health costs.
In each period of time, the adult agents in the economy maximize their utility by
choosing quantity and quality of children as well as their consumptions under the
budget constraint.
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3.1. Land

We refer by land here to the entire geographical environment supporting the economy.
It is a fact that not all regions in the economy are equal in the sense that some regions
have better natural conditions for living and producing than the others. Obviously,
our lives depend on how suitable the ecosystem around us is. Due to technological
constraints, people may not make the most of the available land (i.e. resources and
enviroment), e.g. they may just occupy the part of their geographical territory that
is the most suitable for their lives given the technology available. This part of land
is called productive land whose size depends on the level of technology and land
accessibility.5 The parameter accessibility of land captures its intrinsic suitability for
people to live in the ecosystem as a whole, such as temperature, humidity, rainfall,
river density, and bio-diversity, etc. So we assume that the size of the productive land
of the economy in period t, Xt, is characterized by the following equation

Xt = χ(θ, At)X (1)

where χ(θ, At) ∈ [0, 1), θ is an accessibility parameter of land; At is the level of
technology at time t; and X > 0 is total land (i.e. the entire resources and en-
vironment of the economy). Moreover, χ(0, 0) = 0, χθ(θ, At) > 0, χA(θ, At) >
0, χAA(θ, At) < 0, and for all θ ≥ 0, lim

θ→+∞
χ(θ, At) = 1, lim

At→+∞
χ(θ, At) = 1,

lim
At→+∞

χθ(θ, At) = lim
At→+∞

χA(θ, At) = lim
At→+∞

χAA(θ, At) = 0.

3.2. Production and health cost

The productivity of each unit of time of a household in period t is given by its human
capital, ht, and the level of technology, At. We assume that the output produced
by households is linear in the amount of time devoted to production. Each period is
normalized to be one unit of time. The output produced per unit of time in period t
and per household is

yt = f(At)ht

where f(At) > 0 ∀At ≥ 0, f ′(At) > 0, and f ′′(At) < 0.6

We assume that in each period t, each household is endowed a unit of time. It
allocates its time between supplying labor and raising children. Let us denote (1−ξt) ∈
[0, 1] to be the fraction of time devoted by a household to raise its children in period t,
and ξt to be the fraction of time working, determined by the optimal choice discussed
in Section 3.4. So the real output or income per household in period t therefore is
ξtyt.

5The size of productive land might also depend positively on the size of population. Here, for simplicity we don't
take into account the e�ect of the population size on the productive land. Introducing the role of population size in
productive land formation does not change the qualitative results crucially as long as its marginal e�ect is not too
strong.

6In this paper, the production function is simpli�ed in two aspects: (i) We ignore the role of physical capital because
we would focus on and highlight the role of human capital and the mechanism for human capital accummulation. (ii)
Land does not appear because, in fact, introducing land in the production function does not change the qualitative
analysis.
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The production process harms the health of workers (e.g. because of associated
polution) requiring each of them to pay for a health cost. We assume that for a given
level of technology the e�ect of production on the health of workers depends on the
amount of produced output. Technology itself has two opposite impacts on the health
of workers. For a given human capital of workers, higher levels of technology lead to
higher amounts of produced output. Through this channel, technology harms the
health. On the other hand, for a given amount of output, a higher level of technology
is less harmful for the health of workers because technology enhances productivity of
workers. We de�ne health costs that each household has to pay as a proportional to
its output

mt = ϕ(At)ξtyt (2)

where ϕ(At) ∈ (0, 1), ϕ′(At) < 0 and lim
At→+∞

ϕ(At) = 0.7

3.3. Technological progress and obsolescence

The dynamics of the technological level of the economy depends on the obsolescence
rate and on technological progress. So the level of technology in period t+1 is de�ned
by

At+1 = (1− λ)[1 + gt]At (3)

where λ ∈ (0, 1) is the obsolescence rate of technology, gt is technological progress in
t, and (1− λ)[1 + gt] is technological growth rate between periods t+ 1 and t. As in
Galor and Weil (2000), we assume that gt depends on the average education, et, and
the size Lt of the working generation in period t, i.e.

gt = g(et, Lt) (4)

in which, for any period t, for all et ≥ 0, Lt > 0, we have g(0, Lt) > 0, lim
Lt→0

g(0, Lt) = 0,

and ge(et, Lt) > gL(et, Lt) > 0, gLL(et, Lt) < 0 ∀L > 0 ∀e ≥ 0, and g(et, Lt) is not
bounded from above.8

From equations (3) and (4) we know that if the education of the working generation
t is zero, then in period t + 1 the economy has positive technological growth if and
only if the size of population is large enough, i.e.

(1− λ)[1 + g(0, Lt)] > 1 (5)

⇔ g(0, Lt) >
λ

1− λ
(6)

7The qualitative analysis still remains the same for the more general case lim
At→+∞

ϕ(At) = ϕ ≥ 0

8The assumption ge(et, Lt) > gL(et, Lt) ∀L > 0 ∀e ≥ 0, which implies that the marginal e�ect of education
on technological progress is always stronger than that of population size, is rather reasonable. One can justify
that education equips people with knowledge and skills intensively, making people generate new ideas to enhance
technological progress, while population size just enhances technological progress by interaction between people.
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which implies that for positive technological growth to exist Lt > L where L satis�es

g(0, L) =
λ

1− λ

3.4. Households

3.4.1. Preferences and constraints

We follow the standard model of household fertility behavior introduced �rst in Becker
(1960) extended to consider the impact of health cost and population density. House-
holds are homogenous. A household chooses the number of children and their quality
under the constraint of the unit of time they can use to childrearing and production.
The only input required to produce both child quantity and child quality is time.

In each period t, a generation consists of Lt identical working households. Each
household lives for two periods. In the �rst period (say childhood), t − 1, it uses
up a fraction of his parent household's time. In the second period (say parental),
t, it is endowed with one unit of time, which it allocates between child-rearing and
production. It chooses the optimal mix of quantity and quality of children and it
devotes its remaining time to production to consume its income and pay for the
health cost. The preferences of the household born in period t − 1 are de�ned over
the number and quality of its children, nt and ht+1 respectively, as well as from its
consumption in period t, ct, as follows

ut = γ [lnnt + lnht+1] + (1− γ) ln ct (7)

We assume that the time to raise children physically, regardless education invest-
ment, is decreasing in per household space Xt/Lt, i.e. productive land per household.
This idea is introduced in Goodsell (1937) and Thompson (1938), and recently cited
by de la Croix and Gosseries (2011) to take into account that, when households have
small dwellings, child production is more costly and households have fewer children.
For simplicity, we assume that the cost in time for raising nt children physically is
( Lt
Xt

)βnt, where β ∈ (0, 1) captures the importance of space in raising children. We
de�ne Lt

Xt
as the e�ective population density.

So the fraction of time that households devote to raise nt children with education
et+1 for each child is 1 − ξt = nt[(

Lt
Xt

)β + et+1], and the opportunity cost for doing
so is ytnt[( LtXt )

β + et+1]. Households have to pay a health cost mt, as de�ned in (2),
to compensate for the negative impact of production on their health. Hence, the
agent born at date t− 1 maximizes at date t its utility (7) under the following budget
constraint

ytnt[(
Lt
Xt

)β + et+1] + ct +mt ≤ yt (8)

3.4.2. Human capital formation

Galor and Weil (2000) assume that human capital formation of children born at date t,
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ht+1, depends positively on education investment, et+1, and negatively on the growth
rate of technological progress from period t to period t + 1, gt. They argue that
education lessens the obsolescence of human capital in a changing technology. And,
hence, households have incentives to invest in education when technological progress
appears regardless the level of technology. From our viewpoint, however, the incentives
in investing in education for their o�spring depend on the level of technology, At+1,
rather than the growth rate of technological progress, gt. In e�ect, for an economy
with a high enough level of technology, even if there is no technological progress,
agents have incentives to educate their o�spring in order to able them to make use of
the technology. Hence, we assume that

ht+1 = h(et+1, At+1) (9)

where h(e, A) > 0, hA(e, A) < 0, hAA(e, A) > 0, heA(e, A) > 0 ∀(e, A) ≥ (0, 0);
he(e, A) > 0, hee(e, A) < 0, ∀(e, A) 6= (0, 0), he(0, 0) = 0, lim

A→+∞
h(e, A) > 0 ∀e > 0

and lim
A→+∞

h(0, A) = 0, and lim
A→+∞

he(e, A) > 0 ∀e ≥ 0.

3.4.3. Household's optimization

In each period t, each household of the working generation t chooses the quantity nt
and quality ht+1 of its o�spring, and its own consumption ct after paying for health
cost mt so as to maximize its utility. From (7), (8), and (9), the optimization problem
is

max
nt,ct>0
et+1≥0

γ [lnnt + lnh(et+1, At+1)] + (1− γ) ln ct

subject to

ytnt[(
Lt
Xt

)β + et+1]) + ct +mt ≤ yt

(The �rst-order conditions are shown to be not only necessary but also su�cient
in Appendix A1). Solving the household's optimization problem we have, �rst,

ct = (1− γ)(yt −mt) (10)

nt =
γ[1− (mt/yt)]

( Lt
Xt

)β + et+1

(11)

Regarding the households' choice, Becker (1960) advanced the argument that a
rise in income and an associated rise in the opportunity cost of raising children makes
fertility decline. He suggests that the rise in income induced a decline in fertility
because the positive income e�ect on fertility is dominated by a negative substitution
e�ect brought by the rising opportunity cost of raising children. Similarly, Becker
and Lewis (1973) argued that the income elasticity with respect to investment in
children's education is greater than the one with respect to quantity of children, and
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as a consequence the increase in income leads to a decrease in fertility along with an
increase in the educational investment for each child. In contrast to the prediction
of Beckerian theory, Galor and Weil (2000) showed that when regardless of whether
potential income is high or low, increase in income will not change the division of
child-rearing time between quality and quantity. However, when income is so low
that the household's consumption is binding at the subsistence level, then an increase
in potential income will increase the time spent raising children. The household
can generate the subsistence consumption with smaller labor force participation and
the fraction of time devoted to childrearing increases. Nevertheless, when income is
su�ciently high, so as to ensure the consumption is not binding at the subsistence
level, then an increase in income will not change the amount of time spent by a
household raising children. Hence, according to Galor and Weil (2000), the increase
in income may have no e�ect of the number of children. Interestingly, in taking into
account the negative e�ect of production on health, our model shows that in contrast
to predictions of both Beckerian theory and theory of Galor and Weil, given other
factors constant, the fertility depends positively on income. Moreover, the fertility rate
depends negatively on the health costs and the e�ective population density. Equation
(11) also provides a trade-o� between quantity and quality of children which is stated
from the literature.

Finally, the �rst-order condition with respect to et+1 requires the following rela-
tionship between et+1 and At+1, Lt

Xt
to hold:

G

(
et+1, At+1,

Lt
Xt

)
= he(et+1, At+1)[(

Lt
Xt

)β +et+1]−h(et+1, At+1)

{
= 0 if et+1 > 0

≤ 0 if et+1 = 0

(12)

4. Sensitivity analysis of household's choices

In this section, we shall study in each period the responses of endogenous variables
with respect the changes in exogenous variables.

Proposition 1: In a competitive overlapping generations economy as set up above,

in any period t there exists a threshold of technological level, Ât+1 = Â
(
Lt
Xt

)
> 0,

depending on the efective population density, such that households invest in the edu-
cation of their o�spring if, and only if, the level of technology exceeds this threshold,
i.e.,

et+1 = e

(
At+1,

Lt
Xt

)  = 0 if At+1 ≤ Â
(
Lt
Xt

)
> 0 if At+1 > Â

(
Lt
Xt

) ∀Xt, Lt > 0

moreover

Â′
(
Lt
Xt

)
< 0
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and ∀At+1 > Â
(
Lt
Xt

)
∂e
(
At+1,

Lt
Xt

)
∂At+1

> 0,
∂e
(
At+1,

Lt
Xt

)
∂( Lt

Xt
)

> 0

Proof: See Appendix A2.

We assumed that the size of productive land in period t, Xt, depends on the land
accessibility θ, the level of technology in period t, At, and geographic size of land,
X; and the level of technology in period t+ 1, At+1, depends average education level
of working generation t, et, the size of population Lt, and the level of technology in
period t, At. Therefore, from Proposition 1, Corollary 1 follows

Corollary 1:

dÂt+1

dθ
> 0,

dÂt+1

dAt
> 0,

dÂt+1

dX
≥ 0

and ∀At+1 > Ât+1 then

det+1

det
> 0,

det+1

dθ
< 0,

det+1

dX
< 0,

det+1

dLt
> 0

Proof: See Appendix A3.

From the Proposition 1 and the Corollary 1, the threshold of technological level

Â
(

Lt
χ(θ,At)X

)
depends positively on the accessibility of land θ, the level of technology

At, as well as geographic size of land, but depends negatively on the population size Lt.
This happens because a higher land accessibility, as well as a higher level of technology
or geographic size of land, results in a larger productive landXt. The larger productive
land, i.e. lower population density, makes the cost of raising children physically less
expensive, enhancing the preferences of households toward quantity of children rather
than quality of children. So in order to have positive education investment for children,
the level of technology should be higher to attract interests of households in educating
their children. The larger size of population Lt makes population density increases,
raising the cost of childrearing so that households tend to be more interested in the
quality rather than the quantity of children. As a result, the threshold of technology
decreases in the size of population.

If the level of technology in period t + 1 exceeds the threshold, education invest-
ment for children in period t, et+1, increases with respect to education of their parents,
et, and the size of population, Lt. This is because parent's education and the size
of population in period t enhance the level of technology in the period t + 1 then,
through this channel, households have more incentive to educate their o�springs. In
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addition, as we argue above, a larger population makes the cost of raising children
increase so that households will be more interested in the quality of children. Edu-
cation investment depends negatively on the accessibility of land. That is because a
higher accessibility of land makes raising children less costly due to the decreasing in
population density.

So far we have not considered the general equilibrium yet. However, it is interest-
ing to note how households respond optimally to exogenous changes. Proposition 2
summarizes these responses.

Proposition 2: In an overlapping generations economy as set up above, the house-
hold's optimal choice, in any period t, is such that:

(i) An increase in level of technology in period t+ 1, At+1, results in a decline in the
fertility rate and an increase in education of children, i.e.,

∂nt
∂At+1

≤ 0 and
∂et+1

∂At+1

≥ 0

(ii) An increase in potential income of household results in an increase in fertility rate
but does not a�ect the investment in education for children, i.e.,

∂nt
∂yt

> 0 and
∂et+1

∂yt
= 0

(iii) An increase in the health costs results in a decrease in fertility rate but does not
a�ect the investment in education for children, i.e.,

∂nt
∂mt

< 0 and
∂et+1

∂mt

= 0

(iv) The e�ective population density negative e�ect on fertility rate but has positive
e�ect on education for children, i.e.,

∂nt

∂( Lt
Xt

)
< 0 and

∂et+1

∂( Lt
Xt

)
≥ 0

Proof:
These statements follow straightforwardly from the FOCs (11) and (12). Q.E.D.

Statement (i) in Proposition 2 implies that under an increase in the level of tech-
nology, households have more incentives to invest in the quality of their children and
educate them more. The trade-o� between quality and quantity of children results in
a decline in fertility rate.

Statement (ii) may look surprising as the e�ect of income on per child education
is zero. That is because of the composition of two e�ects here. The �rst one is the
cost e�ect in the sense that the higher the income the higher the opportunity cost
of educating children. The second one is an income e�ect: a higher income makes
households dispose for a bigger budget for education. In the model these two e�ects
completely o�set each other. Notwithstanding, the higher income allows to devote
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more budget to raise children, resulting in an increase in fertility. So, in fact, the total
education expenditures increase along with fertility thanks to any increase in income.
One could raise the question, given the actual observations across countries, of why
high-income countries have higher education than low-income countries? Our model
shows that both income and education may have a strong correlation via the levels of
technology. Indeed, income (or more precisely labor productivity) depends positively
on the level of technology, while high education is driven by a high level of technology
via optimal choices of households. The levels of technology that we mention here are
two levels of technology in two consecutive periods. However, from the dynamics of
technology, these two levels of technology are strongly correlated.

The statement (iii) is also interesting as the health cost negatively a�ects fertility
but does not a�ect education per child. A higher health cost results in a decline in
fertility. In fact, the decline in fertility reduces the total expenditure for education,
but education per child remains unchanged because this reduction is o�set by the
quality quantity trade-o� e�ect.

Statement (iv) makes sense as it refers the e�ect of population density on fertility
and education through the channel of a�ecting the costs of raising children.

5. Competitive equilibria

Competitive equilibria of this economy are characterized by (i) the agents' utility
maximization under constraints, (ii) the households' potential income, (iii) the pop-
ulation dynamics, (iv) the technological progress dynamics, (v) the determinant of
productive land, and (vi) the determinant of the health costs. Therefore, a compet-
itive equilibrium is fully determined by the following system of equations (13)-(19),
given θ,α, β, γ, and X.

FOCs

nt =
γ[1− (mt/yt)]

( Lt
Xt

)β + e(At+1,
Lt
Xt

)
(13)

he(et+1, At+1)[(
Lt
Xt

)β + et+1]− h(et+1, At+1)

{
= 0 if et+1 > 0

≤ 0 if et+1 = 0
(14)

Production

yt = Atht (15)

Population

Lt = nt−1Lt−1 (16)

Technology

At+1 = (1− λ)[1 + g(et, Lt)]At (17)

Land
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Xt = χ(θ, At)X (18)

Health costs

mt = ϕ(At)ξtyt (19)

The competitive equilibrium can be fully characterized by the following reduced
system describing the equilibrium dynamics of the economy's population Lt+1, tech-
nology At+1, and education et+1:

Lt+1 =
1− 1−γ

1−γϕ(At)

( Lt
χ(θ,At)X

)β + e
(

(1− λ)[1 + g(et, Lt)]At,
Lt

χ(θ,At)X

)Lt (20)

At+1 = (1− λ)[1 + g(et, Lt)]At (21)

et+1 = e

(
(1− λ)[1 + g(et, Lt)]At,

Lt
χ(θ, At)X

) = 0 if At+1 ≤ Â
(

Lt
χ(θ,At)X

)
> 0 if At+1 > Â

(
Lt

χ(θ,At)X

)
(22)

for a given initial condition L0, A0, and e0.

6. Steady states

6.1. Stagnation Trap

In this section, we study the conditions on geographical size of land X and its ac-
cessibility θ under which an economy starting from very low initial conditions never
escapes stagnation. We assume an initial education e0 = 0, an intial level of technol-

ogy A0 ≤ A where A solves A = Â
(

L
χ(θ,A)X

)
, and an initial population size L0 < L.

We characterize below a set of geographical factors that does not support an economy
to reach the population size exceeding the critical level L guaranteeing a positive net
rate of technological progress. As a consequence, the technological level will be lower
than the take-o� threshold, locking the economy at zero education. Zero education
associated with small population size can not guarantee a technological progress able
to o�set obsolescence, so that the economy can not expand its productive land to
enhance fertility and reach a bigger population size. This negative feedback loop
prevents the economy from escaping stagnation.

Let S be

S =

(X, θ) ∈ R2
+ :

(
1− 1− γ

1− γϕ(Â(L/X))

)(
χ(θ, Â(L/X))X

L

)β

≤ 1

 (23)
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and X be such that9 (
1− 1− γ

1− γϕ(Â(L/X))

)(
X

L

)β
= 1 (24)

Proposition 3: If an economy with (X, θ) ∈ S, and has initial conditions L0 < L,

e0 = 0, and A0 ≤ A, where A solves A = Â
(

L
χ(θ,A)X

)
,10 then it will be locked in a

low stable steady state with small population L̃, zero level of technology Ã, and zero
education ẽ, speci�cally

L̃ =

(
γ[1− ϕ(0)]

1− γϕ(0)

)1/β

χ(θ, 0)X < L Ã = 0 ẽ = 0

Proof: See Appendix A4.

The Proposition 3 characterizes su�cient conditions under which an economy start-
ing from very low initial state will be locked in a low and stable steady state. This
proposition applies to economies with an initial state that rather matches that of early
stages of development. Nevertheless, the condition in Proposition 3 is not necessary.
The proof of Proposition 3 shows that the geographical factors (X, θ) ∈ S do not allow
an economy starting from low initial conditions to reach a su�ciently large popula-
tion size (L > L) to guarantee a positive net technological progress. Therefore, the
technology converges to a basic level normalized to zero and there is no educational
investment, making the economy converge to a low stable steady state.

5.2. Conditions for escaping stagnation

The previous subsection studies the conditions under which an economy is locked in
a low stable steady state. In this subsection we study the conditions under which
an economy can escape stagnation and take o�. First of all, we study the dynamical
system when the economy really takes o� in the sense that there is always positive
net technological progress, i.e. and (1−λ)[1+g(et, Lt)] > 1 ∀t ≥ τ , where τ is a point
of time that the economy starts having positive net technologial progress, and in the

9Note that X is well de�ned since the left-hand side of (24) is a monotonically increasing and continuous function
of X. We assumed that ϕ(A) ∈ (0, 1) ∀A > 0. Hence, for given L, γ, and β, we have

lim
X→0

(
1−

1− γ
1− γϕ(Â(L/X))

)(
X

L

)β
= 0

and

lim
X→∞

(
1−

1− γ
1− γϕ(Â(L/X))

)(
X

L

)β
=∞

So there exists a unique X satisfying (24). And we have (X, θ) ∈ S ∀θ.
10From the proof of Lemma 2 in Appendix A4, we prove that the function Â

(
L

χ(θ,A)X

)
is increasing and strictly

concave in A. Moreover, this function is bounded from above by Â
(
L
X

)
, and Â

(
L

χ(θ,0)X

)
> 0. Then there exists a

unique A solving A = Â
(

L
χ(θ,A)X

)
.
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long run the level of technology grows unboundedly. We assumed that lim
A→+∞

ϕ(A) = 0

and lim
A→+∞

χ(θ, A) = 1 ∀θ, so the regime that the economy converges is characterized

by

Technology grows at a constant rate (1− λ)[1 + g(ē, L̄)]

γ

(L̄/X)β + ē
= 1 (25)

lim
A→+∞

(
he(ē, A)[(

L̄

X
)β + ē]− h(ē, A)

)
= 0 (26)

Now, the following assumption on the human capital formation function and child
preference parameter su�ces to guarantee the existence of a solution to (25) and (26)

lim
A→+∞

h
(
γ[1−ϕ(0)]
1−γϕ(0)

, A
)

he

(
γ[1−ϕ(0)]
1−γϕ(0)

, A
) > γ (A1)

In e�ect, from (25) and (26) we have

lim
A→+∞

h(ē, A)

he(ē, A)
= γ (27)

So the existence of a solution to (25) and (26) is equivalent to the existence of a
solution to equation (27). In e�ect, the left hand side of (27) is continuous and
monotonically increasing function of ē. We have

lim
ē→0+

h(ē,∞)

he(ē,∞)
= 0 < γ (28)

So from (28) and the assumption (A1) there always exists a unique ē ∈ (0, γ[1−ϕ(0)]
1−γϕ(0)

)

solving equation (27). And it is straightforward to compute the steady state size of
population

L̄ = (γ − ē)1/βX (29)

Now we characterize conditions for an economy to escape stagnation and take o�.
We de�ned the set ES as follows

ES =

{
(X, θ) ∈ R2

+ :

γ[1−ϕ(0)]
1−γϕ(0)

( L
χ(θ,0)X

)β + ē
≥ 1

}
(30)

Applying the implicit function theorem to the FOC (12) with respect to et+1 and
At+1, as well as with respect to et+1 and Lt to G(et+1, At+1,

Lt
Xt

) = 0, we �nd that
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∂2e(At+1,
Lt
Xt

)

∂A2
t+1

and
∂2e(At+1,

Lt
Xt

)

∂(
Lt
Xt

)2
depend on the third derivatives of the human capital for-

mation function h(et+1, At+1), so there is enough room to assume that the optimal
education investment et+1 is a concave function in the level of technology At+1 and in
the population size Lt, i.e.,

∂2e(At+1,
Lt
Xt

)

∂A2
t+1

< 0 ∀At+1 > Â

(
Lt
Xt

)
(A2)

∂2e(At+1,
Lt
Xt

)

∂( Lt
Xt

)2
< 0 ∀At+1 > Â

(
Lt
Xt

)
(A3)

Concave responses of the level of education to the level of technology and to the
population density are necessary conditions to guarantee that the education invest-
ment is bounded from above.11

From (12) and the proof of Proposition 1 (see Appendix A2), it is straightforward
that

G

(
e(At+1,

Lt
Xt

), At+1,
Lt
Xt

)
= 0 ∀At+1 > Â

(
Lt
Xt

)
so we have

lim
At+1→Â(

Lt
Xt

)+

G

(
e(At+1,

Lt
Xt

), At+1,
Lt
Xt

)
= 0

Since the function G
(
et+1, At+1,

Lt
Xt

)
is continuous in et+1 and At+1 for all et+1 ≥ 0

and At+1 ≥ 0, then

G

(
lim

At+1→Â(
Lt
Xt

)+

e(At+1,
Lt
Xt

), Â(
Lt
Xt

),
Lt
Xt

)
= 0 (31)

From the proof of of Proposition 1 we know that

G

(
0, Â(

Lt
Xt

),
Lt
Xt

)
= 0 (32)

The function G(et+1, At+1,
Lt
Xt

) is decreasing in et+1 for all et+1 ≥ 0, in e�ect

Ge

(
et+1, At+1,

Lt
Xt

)
= hee(et+1, At+1)(

Lt
Xt

)β < 0

11Alternatively, if the optimal education investment is strictly convex in the level of technology or in the size
of population, we may assume, for physiological or some other reasons, that the maximum amount of education
investment that a child can receive is bounded from above. As in the model of Galor and Weil (2000), our model also
ignores integer constraints on the quantity of children. So households can choose an in�nitesimally small quantity of
children with in�nitely high quality. Thus, introducing integer constraints may be taken as one justi�cation for an
upper bound on level of education.
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then

G

(
et+1, Â(

Lt
Xt

),
Lt
Xt

)
< 0 ∀et+1 > 0 (33)

Therefore, from (31), (32), and (33) we have

lim
At+1→Â(

Lt
Xt

)+

e(At+1,
Lt
Xt

) = 0

So along with the assumption (A1), we have e(At+1,
Lt
Xt

) is continuous, nondecreas-

ing in At+1, and it is increasing concave in At+1 for all At+1 > Â( Lt
Xt

).

Figure 3.

As from equations (1), (3) and (12), by applying the implicit function theorem

with respect to et+1 and At for G
(
et+1, (1− λ)[1 + g(et, Lt)]At,

Lt
χ(θ,At)X

)
= 0, we �nd

that det+1/dAt depends on the slope of χ(θ, At) with respect to At and the derivatives

of the function h(et+1, At+1). In e�ect, ∀At+1 > Â
(

Lt
χ(θ,At)X

)
we have

det+1

dAt
=
heA(1− λ)[1 + g(et, Lt)][(

Lt
χ(θ,At)X

)β + et+1]− he(LtX )β χA(θ,At)
χ(θ,At)2 − hA

−hee[( Lt
χ(θ,At)X

)β + et+1]

where to simplify notation, we denote he, hA, hee, heA as the �rst derivatives and sec-
ond derivatives of function h(et+1, At+1). Hence, there are also enough room to assume
that optimal education investment et+1 is increasing in current level of technology At,
i.e.

det+1

dAt
> 0 ∀At+1 > Â

(
Lt

χ(θ, At)X

)
(A4)
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In fact, the level of technology At has two impacts on education investment et+1. The
�rst impact is through increase in the level of technology in the next period t + 1
which a�ects positively on education, et+1. The second one is through expansion of
productive land which reduces population density lowering costs of raising children,
and hence increasing fertility and reducing education investment. The assumption
(A4) implies that the �rst e�ect always dominates the second e�ect.

Proposition 4: Under assumptions (A1), (A2), (A3), and (A4), any economy satis-
fying (X, θ) ∈ ES and starting from arbitrarily low initial conditions L0 > 0, A0 > 0
and e0 ≥ 0 will escape stagnation and converge to a regime of large population, high
education and unbounded technological progress.

Proof: See Appendix A5.

The geographical factors (X, θ) ∈ ES guarantee an economy with low initial condi-
tions to reach a su�ciently large population L > L which makes positive net techno-
logical progress to appear. When technology accummulates enough, households invest
education for their o�springs enhancing the take-o� process and the economy will con-
verge to a regime of large population, high education and unbounded technological
progress.

It is straightforward that ES ∩ S = �. For intuition, from (23) and (30) we can
represent the sets S and ES in the (X, θ) plane.

Figure 4. The stagnation set S and take-o� set ES

7. Long run Growth and Divergence

In this section, we analyze the long transition of an economy from the Malthusian
regime through the demographic transition to modern growth and analyze the impact
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of geographical factors on the di�erences in the timing of take-o� generating the
divergence between countries.

7.1. Long run Growth

In Proposition 3, we study conditions of geographical factors under which an economy
starting from very low initial states will be locked in a low and stable steady state.
Proposition 4 provides conditions allowing an economy to escape stagnation, then take
o� and converge to a high and stable steady state. We consider an economy eligible
to escape from stagnation, i.e. (X, θ) ∈ ES, to analyze the long transition from
Malthusian stagnation through demographic transition to modern growth. Consider
an economy in an early stage of development with a very small population size L0 < L,
a low level of technology A0 ≤ A and zero education e0 = 0. In the early stages of
development, population is so small that its e�ect on technological progress may be
dominated by the obsolescence. The low level of technology, associated with negative
net technological progress, makes the level of technology in the next period to be
below the threshold that incentives households to invest in the education for their
o�springs. The low level of technology, on the other hand, has two e�ects making
fertility to be low. First, it makes the size of productive land to be small so that
the cost of raising children is high. Second, it makes the cleanness factor to be high
and households have to pay higher fraction of income for the health cost, leaving
less resources for raising children and consumption. So low fertility makes small size
of population in the next period. And along with low level of technology and zero
education, the economy continues to experience low stage of development. As long
as the size of population is su�ciently small, Lt < L, no crucial quantitative changes
occur in the dynamical system.

In our model, in an early stage of development with the absence of positive net
technological progress, the size of geographical land and its land accessibility play
crucial roles in enhancing population growth. Over time, with the support of these
geographical factors, the slow growth in population taking place in the Malthusian
regime will generate positive net technological progress. The technological progress,
in turn, reinforces population growth through the channel of impact of technological
level on the size of productive land and then on fertility, making population reach
a large size. And so on, when the level of technology is high enough, exceeding the
threshold, education investment appears reinforcing the technological progress. When
education appears due to a high level of technology, there will be a trade-o� between
quantity and quality of children in the decision of households. And the economy
enters in the demographic transition regime characterized by the increasing education
investment and decreasing in fertility along with sharp increases in technology.

Over time, the level of technology increases unboundedly thanks to education in-
vestment and the large size of population, the economy will enter a modern growth
era with large size of population and low fertility but sustained growth. Our model
predicts that the level of technology will approach to in�nity while education invest-
ment converges to a high level ē and the size of population converges to a constant
level, L̄, which depends linearly on the size of geographical land (Proposition 4).
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7.2. Divergence

In this section we study the impact of geographical factors on timing of escaping
from stagnation and then take-o� which may generates the Great Divergence across
countries. We consider two countries N and M having geographical lands and their
land accessibilities as (XN , θN) and (XM , θM), respectively. Assume that these two
countries start with the similar and very low initial conditions as characterized in

Proposition 3, i.e. Li0 < L, ei0 = 0, and Ai0 ≤ Ai = Â
(

L

χ(θi,Ai)Xi

)
, i ∈ {N,M}.

It is obvious that if (XN , θN) ∈ ES and (XM , θM) ∈ S then there will be a
divergence between two countries in the long run in which country N will escape from
stagnation era and converge to a high and stable steady state as stated in Proposition
5 while country M will be locked in a low and stable steady state as characterized in
Proposition 3.

Now we consider the divergence between two countries in the case both countries
are eligible to take o� in the long run. We assume that

1− 1−γ
1−γϕ(0)(

L
χ(θN ,0)XN

)β
+ ē

>
1− 1−γ

1−γϕ(0)(
L

χ(θM ,0)XM

)β
+ ē
≥ 1 (34)

implying (XN , θN), (XM , θM) ∈ ES, and countries N has more initial advantage to
escape from stagnation than country M .

For a simpli�cation and an intuition, we will study two simple cases, satisfying
the inequalities above, which may help to explain the di�erences in timing of take o�
generating the divergence between two countries.12

Case 1: XN = XM , θN > θM

In this case, in the early stage of development, the size of productive land in coun-
try N is larger than one in country M . Hence, in the early stage, population size of
country N is greater than the one of country M because with the same initial sizes
of population, the cost of raising children in country N is cheaper than in country
M . With the larger size of population, country N will have higher level of technology
compared to countryM , enlarging the gap in productive lands between two countries.
The higher level of technology in country N , on the other hand, reduces the fraction
of health costs over the households' potential incomes then leave more resources for
households to raise children. In the early stage of development, education is zero,
hence households will have more children. By this mechanism, due to the di�erence
in land accessibility, the size of population and level of technology, as well as produc-
tive land in country N always greater than those in country M during the early stage
of development. Hence, the timing of appearing education arrives in country N before
country M . We know from (4) that education has stronger marginal e�ects on tech-
nological progress than population has. And from our model, education investment
is a very important preparation for an economy to take o�.

12For the other cases, as long as satisfying condition (34), the analysis of mechanism for divergence between two
countries are analogous to the analyses above.
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Therefore, di�erence in land accessibilities between two countries leads to a di�er-
ence in timing of take o�, generating a divergence between to countries.

Case 2: XN > XM , θN = θM

In this case, the geographical land of country N is greater than the one of country
M while their land accessibilities are the same, then with other factors are the same,
the size productive land of country N is initially greater than one of country M ,
making the cost of raising children in country N less than in country M given the
same population sizes between two countries. Hence, during the development process,
the size of population in country N is always larger than in country M , leading to
the timing of take o� in country N is before in country M , generating a divergence
between these two countries. The mechanism making this divergence in this case is
rather similar to that in case 1.

8. Conclusion

This paper develops a uni�ed endogenous growth model to explain the long transition
from Malthusian stagnation to modern growth along the thousands of years of the
human history and explain the divergence across countries qualitatively. The model
captures the geographical factors in explaining the di�erences in timing of take-o�
which may generating the great divergence. The model shows the existence of a
threshold for level of technology that households will provide education investment
for their children if the level of technology exceeds the threshold. This threshold
depends positively on the size of productive land and negatively on the size of pop-
ulation (Proposition 1). This �nding suggests that for thousand of year there is no
investment in education because the levels of technology were not high enough, i.e.
below the threshold. This paper, in taking into account the health costs and the
e�ective population density, shows that in contrast to predictions of both Beckerian
theory and theory of Galor and Weil, given other factors constant the fertility de-
pends positively on potential income. Moreover, fertility rate depends negatively on
the health costs and e�ective population density (Proposition 2). The model shows
the conditions on geographical factors under which an economy starting from very low
initial state cannot escape from stagnation trap (Proposition 3), as well as conditions
under which an economy will be eligible to escape from stagnation and take-o� in the
long-run (Proposition 4). Hence, the model suggests that geographical factors play
important role, particularly in the very early stage of development.

The model abstracts from several factors such as institutions and cultures, etc.
which are relevant for economic growth. These factors would be re�ected in their
ability to escape from stagnation trap and in the speed of their take-o�. Similarly,
di�erences in policies, for example education reforms, would change the dynamics of
the model crucially. The construction of a uni�ed growth model to capture other
important factors above in explaining the long transition of human history and the
great divergence across countries, as well as predicting the world in the future would
be signi�cant development from this paper. And this task should be left for our future
research.
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Appendix

A1. Solving optimization problem of household

The Lagrangian for optimization problem of households in period t

Lt = γ [lnnt + lnh(et+1, At+1)] + (1− γ) ln ct

−ρt
(
ytnt[(

Lt
Xt

)β + et+1] + ct +mt − yt
)
− ηtet+1

where ρt, ηt ≥ 0 is Lagrangian multipliers associated with the constraints.

The Kuhn-Tucker conditions are

∂Lt
∂nt

=
γ

nt
− ρtyt[(

Lt
Xt

)β + et+1] = 0 (35)

∂Lt
∂et+1

=
γhe(et+1, At+1)

h(et+1, At+1)
− ρtytnt − ηt = 0 (36)

∂Lt
∂ct

=
1− γ
ct
− ρt = 0 (37)

ρt

(
ytnt[(

Lt
Xt

)β + et+1] + ct +mt − yt
)

= 0 (38)

ηtet+1 = 0 (39)

ρt, ηt ≥ 0 (40)

From equation (37) we have

ρt =
1− γ
ct

> 0 (41)
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then from equation (47) we have

ct = yt(1− nt[(
Lt
Xt

)β + et+1])−mt (42)

So from equations (35) and (42) we have

nt =
γ [1− (mt/yt)]

( Lt
Xt

)β + et+1

(43)

and

ct = (1− γ)(yt −mt) (44)

From equations (41), (42) and (44), equation (36) becomes

he(et+1, At+1)

h(et+1, At+1)
− 1

( Lt
Xt

)β + et+1

− ηt = 0 (45)

(i) If ηt = 0 then (45) becomes

he(et+1, At+1)

h(et+1, At+1)
− 1

( Lt
Xt

)β + et+1

= 0 (46)

⇒ he(et+1, At+1)[(
Lt
Xt

)β + et+1]− h(et+1, At+1) = 0 (47)

(ii) If ηt > 0 then et+1 = 0 and (45) gives us

he(0, At+1)

h(0, At+1)
− 1

( Lt
Xt

)β
= −ηt < 0 (48)

⇒ he(0, At+1)(
Lt
Xt

)β − h(0, At+1) < 0 (49)

Therefore, from (47) and (49) we have the following relationship between et+1 and
At+1, Xt, Lt:

G(et+1, At+1,
Lt
Xt

) = he(et+1, At+1)[(
Lt
Xt

)β + et+1]− h(et+1, At+1)

{
= 0 if et+1 > 0

≤ 0 if et+1 = 0

(50)

Since the optimization problem is not convex, then we have to check the second
order conditions, the bordered Hessian matrix is

H̄ =


0 0 yt[(

Lt
Xt

)β + et+1] ytnt 1
0 0 0 −1 0

yt[(
Lt
Xt

)β + et+1] 0 − γ
n2
t

0 0

ytnt −1 0 ζ 0
1 0 0 0 γ−1

c2t
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where ζ = γ hee(et+1,At+1)h(et+1,At+1)−h2
e(et+1,At+1)

h2(et+1,At+1)
.

We have

(−1)3
∣∣H̄3

∣∣ = −

∣∣∣∣∣∣
0 0 yt[(

Lt
Xt

)β + et+1]
0 0 0

yt[(
Lt
Xt

)β + et+1] 0 − γ
n2
t

∣∣∣∣∣∣ = 0

(−1)4
∣∣H̄4

∣∣ =

∣∣∣∣∣∣∣∣
0 0 yt[(

Lt
Xt

)β + et+1] ytnt
0 0 0 −1

yt[(
Lt
Xt

)β + et+1] 0 − γ
n2
t

0

ytnt −1 0 ζ

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣
0 0 yt[(

Lt
Xt

)β + et+1]

yt[(
Lt
Xt

)β + et+1] 0 − γ
n2
t

ytnt −1 0

∣∣∣∣∣∣ = y2
t [(
Lt
Xt

)β + et+1]2 > 0

(−1)5
∣∣H̄5

∣∣ = −
∣∣H̄∣∣ =

1− γ
c2
t

∣∣H̄4

∣∣−
∣∣∣∣∣∣∣∣

0 0 0 −1
yt[(

Lt
Xt

)β + et+1] 0 − γ
n2
t

0

ytnt −1 0 ζ
1 0 0 0

∣∣∣∣∣∣∣∣
=

1− γ
c2
t

∣∣H̄4

∣∣+

∣∣∣∣∣∣
0 0 −1
0 − γ

n2
t

0

−1 0 ζ

∣∣∣∣∣∣ =
1− γ
c2
t

∣∣H̄4

∣∣+
γ

n2
t

> 0

So, the solution to the household's problem is a maximum indeed.

A2. Proof of Proposition 1

Indeed, we prove that for any Xt and Lt, there always exists unique Ât+1 such that
G(0, Ât+1,

Lt
Xt

) = 0. From the assumptions of the function h(et+1, At+1) and equation
(12), we �nd that G(0, At+1,

Lt
Xt

) is monotonically increasing in At+1. In e�ect,

GAt+1(0, At+1,
Lt
Xt

) = heA(0, At+1)(
Lt
Xt

)β − hA(0, At+1) > 0

Furthermore, ∀Xt, Lt > 0, lim
At+1→∞

G(0, At+1,
Lt
Xt

) > 0, whereas from (9) he(0, 0) = 0

and h(0, 0) > 0 indicate that G(0, 0, Lt
Xt

) < 0. So there always exists a unique Ât+1 > 0

such that G(0, Ât+1,
Lt
Xt

) = 0, and therefore, as follows from (12), et+1 = 0 for At+1 ≤
Ât+1.

We have

∂G(0, Ât+1,
Lt
Xt

)

∂Ât+1

= heA(0, Ât+1)(
Lt
Xt

)β − hA(0, Ât+1) > 0
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∂G(0, Ât+1,
Lt
Xt

)

∂( Lt
Xt

)
= βhe(0, At+1)(

Lt
Xt

)β−1 > 0

So by applying the implicit function theorem to G(0, Ât+1,
Lt
Xt

) = 0, we get

Ât+1 = Â(
Lt
Xt

)

in which

Â′(
Lt
Xt

) = −
βhe(0, At+1)( Lt

Xt
)β−1

heA(0, Ât+1)( Lt
Xt

)β − hA(0, Ât+1)
< 0

Furthermore, for all At+1 > Ât+1 we have

G(et+1, At+1,
Lt
Xt

) = he(et+1, At+1)[(
Lt
Xt

)β + et+1]− h(et+1, At+1) = 0

and

∂G(et+1, At+1,
Lt
Xt

)

∂et+1

= hee(et+1, At+1)[(
Lt
Xt

)β + et+1] < 0

∂G(et+1, At+1,
Lt
Xt

)

∂At+1

= heA(et+1, At+1)[(
Lt
Xt

)β + et+1]− hA(et+1, At+1) > 0

∂G(et+1, At+1,
Lt
Xt

)

∂( Lt
Xt

)
= βhe(et+1, At+1)(

Lt
Xt

)β−1 < 0

By applying the implicit function theorem, it follows that

et+1 = e(At+1,
Lt
Xt

)

where

∂et+1

∂At+1

= −
heA(et+1, At+1)[( Lt

Xt
)β + et+1]− hA(et+1, At+1)

hee(et+1, At+1)[( Lt
Xt

)β + et+1]
> 0

∂et+1

∂( Lt
Xt

)
= −

βhe(et+1, At+1)( Lt
Xt

)β−1

hee(et+1, At+1)[( Lt
Xt

)β + et+1]
> 0

Q.E.D.
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A3. Proof of Corollary 1

We have

Ât+1 = Â(
Lt
Xt

) = Â(
Lt

χ(θ, At)X
)

hence,

dÂt+1

dθ
=
∂Ât+1

∂Xt

dXt

dθ
> 0

dÂt+1

dAt
=
∂Ât+1

∂Xt

dXt

dAt
> 0

We have ∀At+1 > Ât+1

et+1 = e(At+1,
Lt
Xt

) = e((1− λ)[1 + g(et, Lt)]At,
Lt

χ(θ, At)X
) > 0

hence,

det+1

det
=

∂et+1

∂At+1

dAt+1

det
=

∂et+1

∂At+1

(1− λ)ge(et, Lt)At > 0

det+1

dθ
=
∂et+1

∂Xt

dXt

dθ
≤ 0

det+1

dLt
=

∂et+1

∂At+1

dAt+1

dLt
+
∂et+1

∂Lt
=

∂et+1

∂At+1

(1− λ)gL(et, Lt)At +
∂et+1

∂Lt
> 0

A4. Proof of Proposition 3

In order to prove the Proposition 3, we �rst prove the Lemma 1 and Lemma 2 belows

Lemma 1: The following inequality always holds

χ(θ, Â(L/X))X ≤ X ∀(X, θ) ∈ S

Proof:
In e�ect, suppose that there were (X, θ) ∈ S such that χ(θ, Â(L/X))X > X, then

X > X and

(
1− 1− γ

1− γϕ(Â(L/X))

)(
χ(θ, Â(L/X))X

L

)β

>

(
1− 1− γ

1− γϕ(Â(L/X))

)(
X

L

)β
= 1

which implies a contradiction that (X, θ) /∈ S.
Q.E.D.
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Lemma 2:

ρÂ

(
Lt

χ(θ, At)X

)
< Â

(
Lt

χ(θ, ρAt)X

)
∀ρ ∈ (0, 1) ∀At > 0

Proof: We know from Corollary 1 that Â
(
Lt
Xt

)
is a increasing in At. Now, we prove

that Â
(
Lt
Xt

)
is concave in At. In e�ect,

d2Â
(
Lt
Xt

)
dA2

t

=
∂2Â

(
Lt
Xt

)
∂X2

t

(
dXt

dAt

)2

+
∂Â
(
Lt
Xt

)
∂Xt

d2Xt

dA2
t

We have

∂2Â
(
Lt
Xt

)
∂X2

t

=
−heA(0, Ât+1)( Lt

Xt
)β + (1 + β)hA(0, Ât+1)[

heA(0, Ât+1)( Lt
Xt

)β − hA(0, Ât+1)
]2 < 0

hence,

d2Â
(

Lt
χ(θ,At)X

)
dA2

t

< 0

So Â
(

Lt
χ(θ,At)X

)
is increasing concave in At. For any given θ and Lt, we consider the

following function

Λ(At) = ρÂ

(
Lt

χ(θ, At)X

)
− Â

(
Lt

χ(θ, ρAt)X

)
We have

Λ′(At) = ρ
dÂ
(

Lt
χ(θ,At)X

)
dAt

−ρ
dÂ
(

Lt
χ(θ,ρAt)X

)
d(ρAt)

= ρ

dÂ
(

Lt
χ(θ,At)X

)
dAt

−
dÂ
(

Lt
χ(θ,ρAt)X

)
d(ρAt)

 < 0

Hence,

Λ(At) < Λ(0) = (ρ−1)Â

(
Lt

χ(θ, 0)X

)
< 0 i.e. ρÂ

(
Lt

χ(θ, At)X

)
< Â

(
Lt

χ(θ, ρAt)X

)
Q.E.D.

Now we prove the Proposition 3. We argue that for this economy, education is
always zero and level of technology will converge monotonically to zero. Indeed, we
have
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A0 ≤ Â

(
L

χ(θ, A)X

)
< Â

(
L

X

)
(sinceχ(θ, A) ∈ (0, 1))

⇒ A0 < Â

(
L

χ(θ, Â(L/X))X

)
≤ Â

(
L

X

)
(under Lemma 1)

and we also have L0 < L, hence

A1 = (1− λ)[1 + g(0, L0)]A0 < A0 < Â

(
L

χ(θ, A0)X

)
⇒ A1 < min

{
Â

(
L0

χ(θ, A0)X

)
, Â

(
L

X

)}
⇒ e1 = 0

⇒ L1 =

(
1− 1− γ

1− γϕ(A0)

)(
χ(θ, A0)X

L0

)β
L0 <

(
1− 1− γ

1− γϕ(Â(L/X))

)(
X

L

)β
L = L

⇒ A2 = (1− λ)[1 + g(0, L1)]A1 < A1 < (1− λ)[1 + g(0, L0)]Â

(
L

χ(θ, A0)X

)

< Â

(
L

χ(θ, (1− λ)[1 + g(0, L0)]A0)X

)
= Â

(
L

χ(θ, A1)X

)
(under Lemma 2)

⇒ A2 < min

{
Â

(
L1

χ(θ, A1)X

)
, Â

(
L

X

)}
⇒ e2 = 0

⇒ L2 =

(
1− 1− γ

1− γϕ(A1)

)(
χ(θ, A1)X

L1

)β
L1 <

(
1− 1− γ

1− γϕ(Â(L/X))

)(
X

L

)β
L = L

⇒ A3 = (1− λ)[1 + g(0, L2)]A2 < A2 < (1− λ)[1 + g(0, L1)]Â

(
L

χ(θ, A1)X

)

< Â

(
L

χ(θ, (1− λ)[1 + g(0, L1)]A1)X

)
= Â

(
L

χ(θ, A2)X,L

)
(under Lemma 2)

⇒ A3 < min

{
Â

(
L2

χ(θ, A2)X

)
, Â

(
L

X

)}
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⇒ e3 = 0

...

and so on, we have for all t

At+1 < min

{
Â

(
Lt

χ(θ, At)X

)
, Â

(
L

X

)}
et+1 = 0

Lt+1 =

(
1− 1− γ

1− γϕ(At)

)(
χ(θ, At)X

Lt

)β
Lt < L

and

At+1 = A0(1− λ)t+1

t∏
i=0

[1 + g(0, Li)]

Since Lt < L ∀t then (1− λ)[1 + g(0, Lt)] < 1 ∀t, so the level of technology converges
monotonically to

A∞ = 0

So for this economy, the existence of a steady state for the system (20)-(22) is the
existence of a solution L̃ to

γ[1− ϕ(0)]

1− γϕ(0)

(
χ(θ, 0)X

L

)β
= 1

⇔ L̃ =

(
γ[1− ϕ(0)]

1− γϕ(0)

)1/β

χ(θ, 0)X

And the steady state of the system (20)-(22) is

(L̃, Ã, ẽ) =

((
γ[1− ϕ(0)]

1− γϕ(0)

)1/β

χ(θ, 0)X, 0, 0

)
Since for this economy education is always zero during the transition then the dy-

namical system can be simply characterized by the following system of two equations.

Lt+1 =
γ[1− ϕ(At)]

1− γϕ(At)

(
χ(θ, At)X

Lt

)β
Lt = ψ(Lt, At, 0)

At+1 = (1− λ)[1 + g(0, Lt)]At = Γ(Lt, At, 0)

Let linearize this system around its steady state, we have
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(
Lt+1

At+1

)
=

(
1− β ∂ψ(L̃,0,0)

∂At

0 (1− λ)[1 + g(0, L̃)]

)(
Lt
At

)
+

(
εL
εA

)
So the associate Jacobian matrix has two real eigenvalues

λ1 = 1− β λ2 = (1− λ)[1 + g(0, L̃)]

where 0 < λ1, λ2 < 1; hence, this steady state is stable.

Q.E.D.

A5. Proof of Proposition 4

Firstly, we prove the Lemma 3 below

Lemma 3: Under (A2) and (A3), et+1 = e
(
At+1,

Lt
Xt

)
is increasing concave in Lt for

all At+1 > Â
(

Lt
χ(θ,At)X

)
.

Proof:
In e�ect, ∀At+1 > Â

(
Lt

χ(θ,At)X

)
, we have

det+1

dLt
=

∂et+1

∂At+1

dAt+1

dLt
+
∂et+1

∂Lt

hence,

d2et+1

dL2
t

=
∂2et+1

∂A2
t+1

(
dAt+1

dLt

)2

+
∂et+1

∂At+1

d2At+1

dL2
t

+
∂2et+1

∂L2
t

We have

d2At+1

dL2
t

= (1− λ)gLL(et, Lt)At < 0

(A2) and (A3) guarantee that ∂2et+1

∂A2
t+1

< 0 and ∂2et+1

∂L2
t
< 0. Therefore,

d2et+1

dL2
t

< 0 ∀At+1 > Â

(
Lt

χ(θ, At)X

)
Q.E.D.

Now we prove the Proposition 4. Indeed, for such economy there does not exist
such a low steady state as characterized in Proposition 3 because the condition

γ[1−ϕ(0)]
1−γϕ(0)(
L

χ(θ,0)X

)β
+ ē
≥ 1
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guarantees that when the economy starts from initial conditions L0 ∈ (0, L), A0 > 0
and e0 = 0,13 it is still able to reach a population size exceeding the threshold L.
When the population size exceeds L, and with an arbitrary positive level of technology,
however small, the net positive technological progress will appear. We now prove that
when Lt > L then Lt+1 > L, and hence Lt+i > L ∀i ≥ 0. We rewrite the dynamical
system between period t and t+ 1 de�ned over Lt > L.

Lt+1 =

γ[1−ϕ(At)]
1−γϕ(At)

Lt(
Lt

χ(θ,At)X

)β
+ e

(
(1− λ)[1 + g(et, Lt)]At,

Lt
χ(θ,At)X

) = ψ(Lt, At, et)

At+1 = (1− λ)[1 + g(et, Lt)]At

et+1 = e

(
(1− λ)[1 + g(et, Lt)]At,

Lt
χ(θ, At)X

) = 0 if At+1 ≤ Â
(

Lt
χ(θ,At)X

)
> 0 if At+1 > Â

(
Lt

χ(θ,At)X

)
For any At > 0 and et > 0, there always exists a unique L̂t > 0 such that

(1− λ)[1 + g(et, L̂t)]At = Â

(
L̂t

χ(θ, At)X

)
since the left-hand side is unboundedly increasing in L̂t while the right-hand side
is monotonically decreasing in L̂t, and they are both de�ned over L̂t > 0. For the
dynamics of population above, we examine for each case of L̂t as follows

(i) If L̂t ≤ L then ψ(Lt, At, et) is di�erential in Lt for all Lt ≥ L. And it is
straightforward that ψ(Lt, At, et) is an increasing function in Lt de�ned over Lt ≥ L.
Therefore, ∀Lt > L we have

Lt+1 =

γ[1−ϕ(At)]
1−γϕ(At)

Lt(
Lt

χ(θ,At)X

)β
+ e

(
(1− λ)[1 + g(et, Lt)]At,

Lt
χ(θ,At)X

)
>

γ[1−ϕ(At)]
1−γϕ(At)

L(
L

χ(θ,At)X

)β
+ e

(
(1− λ)[1 + g(et, L)]At,

L
χ(θ,At)X

)
>

γ[1−ϕ(At)]
1−γϕ(At)

L(
L

χ(θ,At)X

)β
+ ē

>

γ[1−ϕ(0)]
1−γϕ(0)

L(
L

χ(θ,0)X

)β
+ ē
≥ L

(ii) If L̂t > L then ψ(Lt, At, et) is di�erential and increasing in Lt over Lt ∈ (L, L̂t]

and Lt ∈ (L̂t,∞).
13Here we consider the initial education e0 is zero, the analysis of course does not change quantitatively when e0 > 0.
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(iia) If Lt ∈ (L, L̂t] then

Lt+1 =
γ[1− ϕ(At)]

1− γϕ(At)

(
χ(θ, At)X

Lt

)β
Lt >

γ[1− ϕ(At)]

1− γϕ(At)

(
χ(θ, At)X

L

)β
L >

γ[1−ϕ(0)]
1−γϕ(0)

L(
L

χ(θ,0)X

)β
+ ē
≥ L

(iib) If Lt ∈ (L̂t,∞) we have

Lt+1 > lim
Lt→L̂+

t

γ[1− ϕ(At)]

1− γϕ(At)

(
χ(θ, At)X

Lt

)β
Lt =

γ[1− ϕ(At)]

1− γϕ(At)

(
χ(θ, At)X

L̂

)β
L̂

>
γ[1− ϕ(At)]

1− γϕ(At)

(
χ(θ, At)X

L

)β
L >

γ[1−ϕ(0)]
1−γϕ(0)

L(
L

χ(θ,0)X

)β
+ ē
≥ L ∀Lt > L̂

So for this economy, in the long run Lt > L, guaranteeing positivity of net techno-
logical progress, and the level of technology approaches monotonically to in�nity. So
in the long run, the whole dynamical system of the economy will be

Lt+1 =
γLt

(Lt
X

)β + e(At+1,
Lt
X

)

At+1 →∞

et+1 = e(At+1,
Lt
X

)

and the sustained growth is characterized by

L̄ = (γ − ē)1/βX, Ā =∞, h(ē,∞)

he(ē,∞)
= γ

Indeed, this dynamical system can be reduced in a single dynamical equation of
population as follows

Lt+1 =
γLt

(Lt
X

)β + e(∞, Lt
X

)
= F(Lt)

And the stability of the steady state of this dynamical equation guarantees the
stability of the steady-state size of population and the steady-state education invest-
ment. We di�erentiate this equation with respect to Lt, evaluated at Lt = L̄, we
have

F ′(L̄) =

γ
[
( L̄
X

)β + e(∞, L̄
X

)
]
− γL̄

[
βXβL̄β−1 + 1

X

∂e(∞, L̄
X

)

∂ L
X

]
[
( L̄
X

)β + e(∞, L̄
X

)
]2
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= 1−
β( L̄

X
)β + L̄

X

∂e(∞, L̄
X

)

∂( L
X

)

γ
< 1

Since the function e(∞, L̄
X

) is nondecreasing concave in L̄
X

and e(∞, 0) = 0 then
L̄
X

∂e(∞, L̄
X

)

∂( L
X

)
< e(∞, L̄

X
) = ē. Hence,

F ′(L̄) > 1−
β( L̄

X
)β + ē

γ
> 1−

( L̄
X

)β + ē

γ
(since 0 < β < 1)

⇒ F ′(L̄) > 0

Therefore 0 < F ′(L̄) < 1 implying that the steady-state size of poupualtion and
steady-state education investment are stable.

Q.E.D.
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