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Toward a Uni�ed Growth Theory

Nguyen Thang DAO1

Abstract

This paper developes a uni�ed growth model capturing issues of endogenous economic
growth, fertility, infant mortality, technological progress, education and environmental qual-
ity to interpret the evolution of history from Malthusian stagnation regime, through the
demographic transition to modern growth. The production structure in this paper allows to
explain the so-called Environmental Kurznet Curve theoretically. The model suggests that
in the very early stage of development characterized by small population, low education and
low technological level, the economy is trapped in a low stable steady state with very low
growth rate of technological progress, zero-education and hence low suriving probability of
infant which makes the population growth very small. In this stagnation the technologi-
cal progress makes the pollution more polluted. In the period of demographic transition,
corresponding to the industrial revolution time in Western Europe when there is a sharp
increase in technological level, the infant mortality rate increases due to the pollution and
hence the fertility also increases due to maximizing utility behavior of households. The
infant mortality and fertility rates start decreasing when the level of technology exceeds
a threshold (normalized by 1) in which technology has positive e�ect on environmental
quality. The growth rate of technological progress plays an crucial role in demographic
transition. Investment in education increases along with the increase in growth of tech-
nological progress because education get more return via supplying human capital in the
future. The more investment in education for children, the less number of children the
houselds raise because of the budget contraints of household. This trade-o� along with the
growth of technological progress make the fertility rate decreasing, then the economy enters
a Modern Growth regime with reduced population and sustained growth rate of income.
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1. Introduction

The uni�ed modeling of the long transition process including three distinct regimes,
from thousands of years of Mathusian stagnation with high fertility and mortality rate,
and low economic growth, through the demographic transition to modern growth with
low fertility and mortality but sustained growth, is one of the most signi�cant research
challenges facing economists interested in growth and development. Galor and Weil
(2000) develop a uni�ed growth model that captures the historical evolution of popula-
tion, technology, and output. It encompasses the endogenous transition between these
three distinct regimes that have characterized economic development. The authors fo-
cus on the two most important di�erences between these regimes from a macroeconomic
viewpoint: (i) in the behavior of income per capita; and (ii) in the relationship between
the level of income per capita and the growth rate of population. Galor and Moav
(2002) develop a similar model to develop an evolution growth theory that captures the
interplay between the evolution of mankind and economic growth since the emergence
of the human species. These papers, however, just take into account the growth rate of
population through the net fertility rate, not separating between the infant mortality
and fertility rate which in fact evolute in complex trajectories needed to explain.

The most basic description of the relationship between population growth and income
was proposed by Thomas R. Malthus (1798). There are two key components in the
Malthusian model. The �rst one is the existence of some factor of production, such
as land, which is �xed in supplying, implying decreasing returns to scale of all other
factors of production. The second one is a positive e�ect of the standard of living on
the growth rate of population. According to Malthus, the standard of living will be
high when population size is small, and population will grow as a natural result of
passion between the sexes. When population size is large, the standard of living will
be low and population will be reduced by the either the �preventive check� (intentional
reduction of fertility) or by the �positive check� (malnutrition, disease, and femine)
(see more discussion in Galor and Weil 2000, pp. 807). Malthus (1798) stated that
�... Population, when unchecked, increase in a geometrical ratio. Subsistence increases
only in an arithmetical ratio...�. The Malthusian model implies that, in the absence of
changes in technology or in the availability of land, the size of the population will be
self-equilibrating. Furthermore, increases in available resources will be, in the long run,
o�set by increases in the size of population. The predictions of the Malthusian model
are consistent with the evolution of technology, population, and output per capita in
the history. For thousand of years, the living standard was nearly constant and did not
di�er considerably across countries. Estimations from Angus Maddison (1982) show
that the growth rate of GDP per capita in Europe between 500 and 1500 was zero. Lee
(1980) shows that the real wage in England in 1800 was roughly the same to it had
been in 1300. Chao (1986) shows that real wages in China at the end of eighteenth
century were even lower they had been at the beginning of the �rst century. Lucas
(1998) agues that even in the richest countries, the sustained growth phenomenon in
living standards is only a few century old.

The growth of population before industrial revolution is also consistent with the
predictions of the Malthusian model. The growth rate of population in Europe between
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the years 500 and 1500 was nearly zero (around 0.1% per year, see Figure 1). Livi-
Bacci (1997) estimates the growth rate of world population from the year 1 to 1750
at 0.064% per year. The predictions of the Malthusian model are again borne out by
the �uctuations in population and wages. Lee (1997) shows positive income elasticity
of fertility and negative income elasticities of mortality from studying a wide range
of preindustrial countries. Wrigley and Scho�eld (1981) �nd out a strong positive
correlation between real wages and marriage rates in England over the period 1551 -
1801. During the period 1275 - 1801, there was a large exogenous shock, the Black
Death, which reduced the population very signi�cantly. This reduction in population
was accompanied by an increase in real wage. When the population recovered, the real
wages fell (see Hansen and Prescott, 2002).

Figure 1. Output growth in Western Europe, 500 - 1990

Source: Data from 500 - 1820 are from Augus Maddison (1982) and apply to Europe as a whole.
Data for 1820 - 1990 are from Maddison (1995) and apply to Western Europe2.

The Post-Malthusian regime, which occurred between the Malthusian and Modern
Growth eras, share one characteristic with each of them. Income per capita grew during
this period, of course not rapidly as it would during the Modern Growth era. And at
the same time, the Malthusian relationship between income per capita and population
growth still holds. Rising in income was accompanied with rising in population growth
rate which can be proxied by rising in fertility rate (see Figure 2). Galor (2011) argues
that the simultaneity of the demographic transition across Western European countries
that di�ered signi�cantly in their incomes per capita suggests that the high level of
income reached by these countries in the Post-Malthusian Regime played a very limited

2Quoted from Galor and Weil (2000)
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role, if any, in the onset of the demographic transition, refuting the �rst testable im-
plication of Beckerian theory (1960) which advanced the argument that the decline in
fertility was a by-product of the rise in income and the associated rise in the opportunity
cost of raising children. More precisely, the rise in income induced a fertility decline
because the positive income e�ect on fertility was dominated by a negative substitution
e�ect brought about by the rising opportunity cost of raising children.

Figure 2. The Demogreaphic Transition Across Western Europe

Sources: Chesnais (1992) and Maddison (2008)3

The Modern Growth Regime is characterized by steady growth in both income per
capita and the level of technology. In this regime there is a negative relationship
between the level of income per capita and the growth rate of population. Indeed, the
highest rates of population growth are observed in the poorest countries, and many rich
countries have population growth rates closed to zero, or even negative.

The history of demographic transition also gives us a look, which is worth to explain
and is still very limited in the literature, on the rate of fertility and infant mortality
during the industrial revolution. The data for Western Europe from 1705 to 1925 shows
that the decline in mortality started nearly a century prior to the decline in fertility and
was initially associated with increasing in fertility rates in some countries (see Figures
2 and Figures 3).4

3Quoted from Galor (2011)
4One could argue that the decline in mortality was not internalized into the decisions of households who had di�culties

in separating a temporary decline from a permanent one. This argument, however, is rahter implausible, given that
mortality declined for nearly 140 years prior to the demographic transition. It means that around six generations did
not update information about mortality rates in their immediate surroundings and kept the collective memories about
mortality rates prevalent more than a century earlier.
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Figure 3. Mortality and Fertility across Western Europe, 1705 - 1925

Data sources: Chesnais (1992); Maddison (2008)5

Figure 3 shows that, except France, during the period of increasing in fertility rates
from 1810 to 1875 the rates of mortality seem nondecreasing and even increasing in
England and particularly in Finland. After this period the mortality rates declined
again. Huck (1995) provides an evidence of rising in infant mortality rates in nine
parishes in the industrial North of England from 1813 to 1836.

Table 1. Infant mortality rates after adjustment for under registration by parish (rate
per thousand baptisms)

Source: Micro�lms of original parish registers from the Church of Latter Day Saints Genealogical
Library6

5Quoted from Galor (2005)
6Quoted from Huck (1993)
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There is evidence for the impact of industrial revolution on environmental quality. In
fact, the industrial revolution of the mid-19th century introduced new sources of air and
water pollution which might a�ected considerably the surviving probability of infants.
So, the evolutions of fertility and infant mortality during the industrial revolution need
an explanation with a considering the impacts of environmental quality and education
on infant mortality and on fertility behavior of households. To my best knowledge,
there have been no published paper to take into account all these features in a uni�ed
model for demographic transition and economic growth. This present paper tries to
make an e�ort to �ll this big gap from the literature.

2. The Basic structure of the model

We consider an overlapping generations economy in which each agent lives two periods,
say childhood and adulthood. In every period the economy produces a single homoge-
neous �nal good, using natural resource and human capital as inputs. The supply of
natural resource is from nature. Using natural resource implies polluting environment.
The supply of human capital is determined by agents' decisions in the previous period
regarding the number and quality of their children.

2.1. Environmental Dynamic and Environmental Kuznet Curve

Environmental Dynamic

We assume that the lowest level of environmental quality is zero. The environment
can regenerate itself during each period t. The regeneration capacity of environment
in period t, Ω(Et−1), depends on the environmental quality from the previous period,
i.e. Et−1, where Ω(0) = 0, Ω′(E) > 0 for E < E∗, Ω′(E) < 0 for E > E∗ and Ω′′(E) <
0. E∗ is the environmental quality that gives us the highest level of environmental
regeneration. We also assume that production process degrades the environmental
quality and pollution Pt plays a role as an input of production. Such the kind dynamic
of environment was �rst explored in �The Entropy Law and the Economic Process� by
Georgescu-Rogen (1971). The arguments for this dynamic base on biophysical laws
as the �rst law of thermodynamics (law of material or energy conservation) and the
second law of thermodynamics (law of entropy). This stream of nonlinear dynamic of
environment is then used in many papers such as Georgescu-Rogen (1975), Daly (1987,
1992), Tahvonen and Kuuluvainen (1991), Bovenberg and Smulders (1995), Smulders
(1995, 2000), Fullerton and Kim (2008), etc. The environmental quality (E) evolves
over time according to the following function

Et+1 = Et + Ω(Et)− Pt+1
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Figure 4. The regeneration of the environment

For a given level of pollution P , the environmental quality converges to a quasi-
steady state Ē(P ) that satis�es Ω(Ē(P ))− P = 0.

Environmental Kuznet Curve

The Environmental Kuznets Curve (EKC) hypothesis postulates an inverted-U-shaped
relationship between income per capita and pollution level. A sizeable literature on
EKC has grown dramatically in recent period. Two main possible explanations for this
EKC are: (i) the progress of economic development, from clean agrarian economy to
polluting industrial economy to clean service economy; (ii) tendency of people with
higher income having higher preference for environmental quality, etc (see Dinda 2004).
The dynamic of environmental quality in the present paper falls in the �rst explanation
strain.

2.2. Production of �nal output

Production occurs likely according to the Constant Elasticity of Substitution that is
subject to endogenous technological progress. We assume that when the level of tech-
nology is low (0 < At < 1) then the production is pollution-augmenting technological
change and when the level of technology is high (At ≥ 1) then the production is hu-
man capital-augmenting technological change. This assumption �ts to real observations
from history to present and from across countries. Indeed, for advanced economies high
technology seems to be associated more with human capital while for less advanced
economies technology seems to be associated more with pollution. The output pro-
duced at time t, Yt, is

Yt =

{
a(Et) [αHρ

t + (1− α)(AtPt)
ρ]1/ρ if 0 < At < 1

a(Et) [α(AtHt)
ρ + (1− α)P ρ

t ]1/ρ if At ≥ 1

where Ht is aggregate human capital of the economy, Pt is the aggregate pollution level
playing a role as an input for production, At is the level of technology, a(Et) is total
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factor productivity depending on environmental quality with a′(Et) > 0, a′′(Et) < 0.
In each period t, the producing �rms choose inputs Ht and Pt to maximize their pro�ts.
Suppose that there are no property rights over natural resource. The return to pollution
is therefore zero, and the return per e�ciency unit of human capital is therefore equal
to its average product.

wt = w(At, Et, ht, pt) =

 a(Et)
[
α + (1− α)(At

pt
ht

)ρ
]1/ρ

if 0 < At < 1

a(Et)
[
αAρt + (1− α)( pt

ht
)ρ
]1/ρ

if At ≥ 1
(1)

where pt = Pt/Lt is the amount of pollution (natural resources) per worker at time t;
and wA(At, Et, ht, pt) > 0, wE(At, Et, ht, pt) > 0, wh(At, Et, ht, pt) < 0.

This production form allows us to capture the inverted-U-shaped of EKC. Indeed,
the �rst-order condition with respect to Pt gives us

Pt =


(

(1−α)Aρt a(Et)

a′(Et)[αHρ
t +(1−α)(AtPt)ρ]

) 1
1−ρ

if 0 < At < 1(
(1−α)a(Et)

a′(Et)[α(AtHt)ρ+(1−α)P ρt ]

) 1
1−ρ

if At ≥ 1

(2)

Lemma 1: Given (At, Ht, Et−1, α, ρ), in any period t there exists a unique and strictly
positive optimal level of pollution Pt > 0

Pt = P (At, Ht, Et−1, α, ρ)

where ∂Pt
∂At

> 0 for 0 < At < 1, ∂Pt
∂At

< 0 for At ≥ 1, and ∂Pt
∂Ht

< 0.

Proof:
For the case 0 < At < 1,

Pt =

(
(1− α)Aρta(Et)

a′(Et) [αHρ
t + (1− α)(AtPt)ρ]

) 1
1−ρ

(3)

Let G1 = G1(At, Ht, Pt) =

(
(1−α)Aρt a(Et)

a′(Et)[αHρ
t +(1−α)(AtPt)ρ]

) 1
1−ρ

we have

lim
Pt→0

G1 =

(
(1− α)Aρta(Et−1 + Ω(Et−1))

a′(Et−1 + Ω(Et−1))αHρ
t

) 1
1−ρ

> 0

lim
Pt→Et−1+Ω(Et−1)

G1 =

(
(1− α)Aρta(0)

a′(0) [αHρ
t + (1− α)(AtPt)ρ]

) 1
1−ρ

= 0

and

∂G1

∂Pt
=

(α− 1)AρtG
ρ
1

1− ρ
.Φ1 < 0
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where Φ1 =
a′(Et)2[αHρ

t +(1−α)(AtPt)ρ]+a(Et)(−a′′(Et)[αHρ
t +(1−α)(AtPt)ρ]+a′(Et)ρ(1−α)AρtP

ρ−1
t )

a′(Et)2[αHρ
t +(1−α)(AtPt)ρ]

2 > 0.

So for the case 0 < At < 1, there exists a unique strictly positive level of optimal
pollution which is the intersection between the 45° line and the curve G1 as presented
in the Figure 5. Now, we prove that ∂P

∂At
> 0 and ∂P

∂Ht
< 0. Indeed, we �x Ht and Pt

and vary At, it is obvious that the line G1 rotates clockwise as At increases up to Ãt.
Consequently, the intersection between the curve G1 and the 45° line will be at (P̃t, P̃t)
where P̃t > Pt (see Figure 5). Hence,

∂P
∂At

> 0. We can use the analogous arguments to

show that ∂P
∂Ht

< 0.

Similarly, for the case At ≥ 1,

Pt =

(
(1− α)a(Et)

a′(Et) [α(AtHt)ρ + (1− α)P ρ
t ]

) 1
1−ρ

(4)

Let G2 =

(
(1−α)a(Et)

a′(Et)[α(AtHt)ρ+(1−α)P ρt ]

) 1
1−ρ

we have

lim
Pt→0

G2 =

(
(1− α)a(Et−1 + Ω(Et−1))

αa′(Et−1 + Ω(Et−1))(AtHt)ρ

) 1
1−ρ

> 0

lim
Pt→Et−1+Ω(Et−1)

G2 =

(
(1− α)a(0)

a′(0) [α(AtHt)ρ + (1− α)P ρ
t ]

) 1
1−ρ

= 0

and

∂G2

∂Pt
=
α− 1

1− ρ
Gρ

2Φ2 < 0
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where Φ2 =
a′(Et)2[α(AtHt)ρ+(1−α)P ρt ]+a(Et)(−a′′(Et)[α(AtHt)ρ+(1−α)P ρt ]+a′(Et)ρ(1−α)P ρ−1

t )
a′(Et)2[α(AtHt)ρ+(1−α)P ρt ]

2 > 0.

So for the case At ≥ 1, there exists a unique strictly positive level of optimal pollution
which is the intersection between the 45° line and the curve G2 as presented in the
Figure 6. Now, we prove that ∂P

∂At
< 0 and ∂P

∂Ht
< 0. Indeed, we �x Ht and Pt and vary

At, it is obvious that the line G2 rotates counter-clockwise as At increases up to Ãt.
Consequently, the intersection between the curve G1 and the 45° line will be at (P̃t, P̃t)
where P̃t < Pt (see Figure 6). Hence,

∂P
∂At

> 0. We can use the analogous arguments to

show that ∂P
∂Ht

< 0. QED.

So there exists an inverted-U-shape between pollution and level of technology. This
result supports for the explanation of ECK curve that the progress of economic devel-
opment, from clean agrarian economy to polluting industrial economy to clean service
economy.

2.3. Households

2.3.1. Preferences and budget constraints of households

We follow the standard model of household fertility behavior in Becker (1960). The
household chooses the number of children and their quality in the face of a constraint
on the total amount of time that can be used to childrearing and labor-market activities.
Following Galor and Weil (2000) we also further assume that the only input required
to give birth and to produce both child quantity and child quality is time.

In each period t a genreration that consists of Lt identical agents joins the labor
force. Each agent t has a single parent and lives for two periods. In the �rst period of
life (say childhood period), t− 1, the agent consumes a fraction of his parent's time. In
the second period of life (say parental period), t, he is endowed with one unit of time,
which he allocates between child-rearing and labor force participation. He chooses the
optimal mixture of quantity and quality of surviving children and supply his remaining
time in the labor market to consume his wages. The preferences of the agent born in
period t − 1 are de�ned over the number and quality of his surviving children, nt and
ht+1, respectively, as well as from his consumption in period t, ct. They are represented
by the following utility function

ut = γ [lnnt + lnht+1] + (1− γ) ln ct (5)

Let φb

πt
+ φq + φeet+1 be the time cost for an agent t of raising a surviving child

with a level of education et+1. That is, φb is the cost in time to give a birth, φq is
the cost in time to raise physically a surviving child, regardless of quality, and φe is
the cost in time required for each unit of education for each child. πt = π(et, Et) is
the surviving probability of children when they are born. This probability depends
positively on both environmental quality Et and education level of the parent et. We
de�ne the potential income of the agent t as the amount zt = wtht he would earn if he
devoted his entire time endowment (which is normalized by 1) to the labor market, wt
is return to per e�cient unit of human capital which is de�ned by eqution (1) and ht is
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the human capital of the agent. The potential income is divided between expenditure
on child-rearing (giving birth, quantity as well as quality) with an opportunity cost of

wtht[
φb

πt
+ φq + φeet+1] per surviving child, and consumption ct. Hence, the agent born

at date t− 1 faces at date t the following budget constraint

wthtnt[
φb

πt
+ φq + φeet+1] + ct ≤ wtht (6)

2.3.2. Human capital formation

The human capital of an agent is determined by his education level (which is provided
by his parent) and by the technogical progress. As in Galor and Weil (2000), we assume
that human capital of children born at date t, ht+1, is an increasing function of their
education et+1, and a decreasing function of the rate of technological progress from
period t to period t + 1, gt+1 = At+1−At

At
. The higher the children's education, the

smaller the adverse e�ect of technological progress.

ht+1 = h(et+1, gt+1) (7)

where ht+1 = h(et+1, gt+1) > 0, he(e, g) > 0, hee(e, g) < 0, hg(e, g) < 0, hgg(e, g) < 0,
heg(e, g) > 0 ∀(et+1, gt+1) ≥ 0 and lim

gt+1→∞
h(0, gt+1) = 0. Hence, the human capital

level of children is an increasing and strictly concave function of education, and a
decreasing and strictly convex function of technological progress.7 Education lessens
the obsolescence of human capital in a changing technology. The marginal productivity
of parental investment in a child's human capital increases in a more rapidly changing
technological environment, i.e. heg(e, g) > 0.

2.3.3. Optimization

Each agent of generation t chooses the number and quality of his surviving children, and
therefore the human capital of children and his own consumption, so as to maximize
his utility. Substituting (6) and (7) into (5), the optimization problem of the agent t is

(nt, et+1) ∈ argmax γ [lnnt + lnh(et+1, gt+1)] + (1− γ) lnwtht(1− nt[
φb

πt
+ φq + φeet+1])

subject to

wtht(1− nt[
φb

πt
+ φq + φeet+1]) ≥ 0

nt ≥ 0, et+1 ≥ 0

For solving this optimization problem, see the Appendix. The �rst-order condition
with respect to nt gives us

7Strictly convexity with respect to gt+1 is not essential. This property just ensures that the level of human capital
will not be zero at high rates of technological progress.
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nt =
γ

φb

πt
+ φq + φeet+1

(8)

So the optimization with respect to nt implies that the time spent raising children
by agent t is γ, whereas 1 − γ is devoted for labor market, and hence the optimal
consumption is always strictly positive, ct > 0.

It is shown in Galor and Weil (2000) that, an increase in income does not change the
division of childrearing time between quality and quantity. This argument still holds
in our context, however, we extent the argument to capture also the time for giving
birth. What do a�ect the division between time spent on giving births, time spent on
quality and time spent on quantity of children are the rate of technological progress,
which changes the return to education, and the surviving probability of infant children,
which changes the fertility behavior of the agent.

The optimization with respect to et+1 gives us the implicit functional relationships
between et+1 and gt+1, πt are given by

G(et+1, gt+1, πt) = he(et+1, gt+1)[
φb

πt
+φq +φeet+1]−φeh(et+1, gt+1)

{
= 0 if et+1 > 0

≤ 0 if et+1 = 0

(9)
where Ge(et+1, gt+1, πt) < 0, Gg(et+1, gt+1, πt) > 0 and Gπ(et+1, gt+1, πt) < 0 ∀gt+1 ≥ 0
and ∀et+1 > 0. To ensure the existence of positive level of gt+1 such that the chosen
level of education is 0, we assume that

G(0, 0, πt) = he(0, 0)[
φb

πt
+ φq]− φeh(0, 0) < 0 ∀πt ∈ [0, 1] (A1)

Lemma 2: If (A1) is satis�ed, then the level of education chosen by members of

generation t for their children is a nondecreasing function of gt+1.

et+1 = e(gt+1, πt)

{
= 0 if gt+1 ≤ ĝ

> 0 if gt+1 > ĝ
∀πt ∈ [0, 1]

where ĝ > 0, and

eg(gt+1, πt) > 0, eπ(gt+1, πt) < 0 ∀gt+1 > ĝ

Proof:
As follows from the assumptions of human capital formation function and (9), we

�nd that G(0, gt+1, πt) is monotonically increasing in gt+1. In e�ect,

∂G(0, gt+1, πt)

∂gt+1

= heg(0, gt+1)[
φb

πt
+ φq]− φehg(0, gt+1) > 0
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Furthermore, lim
gt+1→+∞

G(0, gt+1, πt) > 0 whereas (A1) implies that G(0, 0, πt) < 0.

Hence, there exists a unique ĝ > 0 such that G(0, ĝ, πt) = 0, and therefore, as fol-
lows from (9) et+1 = 0 for gt+1 ≤ ĝ. Furthermore, by using implicit function the-
orem, it follows from (9) that et+1 is a single-value function of gt+1 and πt, et+1 =
e(gt+1, πt) where ∂et+1/∂gt+1 = −Gg(et+1, gt+1, πt)/Ge(et+1, gt+1, πt) > 0, ∂et+1/∂πt =
−Gπ(et+1, gt+1, πt)/Ge(et+1, gt+1, πt) < 0. Q.E.D.

By implicit function theorem, we �nd that

eππ(gt+1, πt) =
∂(−Gπ/Ge)

∂πt
=
GπGeπ −GππGe

G2
e

=
−heheeφb(φb + 2πt[φ

q + φeet+1])

π4
tG

2
e

> 0

Hence, e(gt+1, πt) is a decreasing convex function in πt. We assume that

lim
πt→1−

e(gt+1, πt) + πteπ(gt+1, πt) > 0 ∀gt+1 > ĝ (A2)

We can see from (9) that egg(gt+1, πt) depends on the third derivatives of the human
capital formation function, h(et+1, gt+1). According to Galor and Weil (2000), a concave
reaction of the level of education to the rate of technological progress appears plausible
economically, hence we can assume that8

egg(gt+1, πt) < 0 ∀gt+1 > ĝ (A3)

Substituting et+1 = e(gt+1, πt) into (8), we have

nt =
γ

φb

πt
+ φq + φee(gt+1, πt)

(10)

From (1) and de�ntion of zt, we have

zt = z(et, gt, pt) = wtht =

{
a(Et) [αhρt + (1− α)(Atpt)

ρ]1/ρ if 0 < At < 1

a(Et) [α(Atht)
ρ + (1− α)pρt ]

1/ρ if At ≥ 1

where ze(et, gt, pt) > 0, zg(et, gt, pt) < 0, and zp(et, gt, pt) = 0.

The following proposition summarizes the properties of the functions e(gt+1, πt),
n(gt+1, πt) and their signi�cance for the evolutions in fertility and the substitution of
quality for quantity of surviving children for the process of development.

8Galor and Weil (2000) note that, if e(gt+1) is strictly convex we may assume that for physiological or other reasons,
the maximum amount of education that a child can receive is bounded from above. In the model we ignore integer
constraints on the numer of children, so that absent a constraint on the quality per child, parent might choose to have
an in�nitesimally small number of children with in�nitely high quality. Thus the existence of integer constraints may be
taken as one justi�cation for an upper bound on level of education.

13



Proposition 1: Under (A1) and (A2)

(1) Technological progress that is expected to occur between the �rst and second periods
of children's lives results in a decline in the fertility rate, a decline parents' chosen
number of surviving children and an increase in their quality, i.e.

∂nbt
∂gt+1

≤ 0,
∂nt
∂gt+1

≤ 0, and
∂et+1

∂gt+1

≥ 0

(2) An increase in environmental quality as well as an increase in parental education
level result in an increase in the surviving probability of infant, which in turn results in
a decline in the fertility rate and an increase in number of surviving children, i.e.,

∂nbt
∂πt

< 0 and
∂nt
∂πt

> 0

(3) An increase in parental potential income does not change the fertility rate and
number of surviving children or their quality, i.e.,

∂nbt
∂zt

= 0,
∂nt
∂zt

= 0, and
∂et+1

∂zt
= 0

Proof:

(1) Follows directly from the result in Lemma 2 that eg(gt+1, πt) > 0 ∀gt+1 > ĝ and
eg(gt+1, πt) = 0 ∀gt+1 < ĝ, and from equation (10)

(2) Follows directly from the result in Lemma 2 that eπ(gt+1, πt) < 0 ∀gt+1 > ĝ and
eπ(gt+1, πt) = 0 ∀gt+1 < ĝ, and from equation (10) we have

∂nt
∂πt

> 0

The fertility rate in period t is the number of children born per person, nbt

nbt =
nt
πt

=
γ

φb + πt[φq + φee(gt+1, πt)]
(11)

We have

∂nbt
∂πt

= −γ[φq + φe(e(gt+1, πt) + πteπ(gt+1, πt))]

(φb + πt[φq + φee(gt+1, πt)])
2

We will show that Λ = e(gt+1, πt) + πteπ(gt+1, πt) > 0. In e�ect,

∂Λ

∂πt
= 2eπ(gt+1, πt) + πteππ(gt+1, πt)

Using (9) and applying implicit function theorem we have

∂Λ

∂πt
= −2

Gπ

Ge

− πt
GππGe −GπGeπ

G2
e
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=
πtGπGeπ −Ge(2Gπ − πtGππ)

G2
e

=
(φb)2hehee

π4
t

< 0

Hence, Λ is decresing in πt, then we have

Λ > lim
πt→1−

e(gt+1, πt) + πteπ(gt+1, πt) > 0 ∀πt ∈ [0, 1)

Therefore,

∂nbt
∂πt

< 0

(3) Follows directly from the equations (8) and (9). Q.E.D.

2.4. Technological progress

As in Galor andWeil (2000), we assume that technological progress taking place between
periods t and t+ 1 depends on the average education among the working generation in
period t, et, and the population size of the working generation in period t, Lt.

gt+1 =
At+1 − At

At
= g(et, Lt) (12)

where for Lt � 0 and et ≥ 0, g(0, Lt) > 0 , gi(et, Lt) > 0, and gii(et, Lt) < 0 with
i ∈ {et, Lt}.9

Hence, when the population size is large enough then the rate of technological
progress between period t and period t + 1 is always positive, even if labor quality
is zero, increasing, and strictly concave function of the population size and level of
education of working generation at time t.

In this stage, in order to simplify the exposition, the dynamical system is analyzed
initially under the assumption that an increase in the size of population has no e�ect
on technological progress, i.e., we initially assume that

gL(et, Lt) = 0 ∀Lt > 0 (A4)

In the later stages of the analysis, the e�ect of population size on the relationship
between technological progress and the level of education as speci�ed in (12) is fully
taken into account in the analysis.

9As in Galor and Weil (2000), we also assume that for a su�cient small population Lt > 0 then g(0, Lt) ≥ 0,
gi(et, Lt) ≥ 0 for all t, and g(0, Lt) > 0, gi(et, Lt) > 0 for some t. These assumptions ensure that in the early stages
of development the economy is indeed in a Malthusian steady state. And if technological progress occurred in every
time period at a pace that increased with the size of population, the growth rate of output per capita would always be
positive, despite the adjustment in the size of population.
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2.5. The Evolution of Population, Technology and Pollution

The size of the working population in the period t+ 1, Lt+1, is

Lt+1 = ntLt (13)

where Lt is the size of the working population in period t, nt is the number of children
per person, and hence nt − 1 is the growth rate of population. The size of the working
population in period 0 is historically given at a level L0.

The level of technology in period t+ 1, At+1, is derived from equation (12) as

At+1 = (1 + gt+1)At (14)

where the level of technology in period 0 is historically given at a level A0.
The evolution of environmental quality depends on the evolution of the technology

level,

Et+1 =


Et + Ω(Et)−

(
(1−α)Aρt+1a(Et+1)

a′(Et+1)[αHρ
t+1+(1−α)(At+1Pt+1)ρ]

) 1
1−ρ

if 0 < At+1 < 1

Et + Ω(Et)−
(

(1−α)a(Et+1)

a′(Et+1)[α(At+1Ht+1)ρ+(1−α)P ρt+1]

) 1
1−ρ

if At+1 ≥ 1

(15)

where Pt+1 is implictly de�ned (see equation (2)) by

Pt+1 =


(

(1−α)Aρt+1a(Et+1)

a′(Et+1)[αHρ
t+1+(1−α)(At+1Pt+1)ρ]

) 1
1−ρ

if 0 < At+1 < 1(
(1−α)a(Et+1)

a′(Et+1)[α(At+1Ht+1)ρ+(1−α)P ρt+1]

) 1
1−ρ

if At+1 ≥ 1

(16)

3. The Dynamic system

The development of the economy is characterized by the evolution of output per capita,
technological level, education per worker, human capital, and environmental quality.
The evolution of the economy is fully determined by a sequence {et, gt, Et, Lt}∞t=0 that
satis�es (13)-(16) and Lemma 2 in every period t.

3.1. The evolution of Technology and Education

The evolution of technology and education, given (A4), is characterized by the sequence
{gt, et}∞t=0 that satis�es in every period t the equations gt+1 = g(et, Lt) and et+1 =
e(gt+1, πt). In the light of the properties of the functions e(gt+1, πt) and g(et, Lt) given
in Lemma 2, (A3), (A4), and (12), it follows that if the size of population plays a role
in technological progress, this dynamical subsystem is characterized qualitatively by
three di�erent con�gurations, which are depicted in Figures 7 - 9. The economy shifts
endogenously from one con�guration to another as the size of population increases and
the curve g(et, Lt) shifts upward to account for the e�ect of an increase in population.
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Figure 7. The evolution of technology and education for a small population

Figure 7 describes the evolutions of education et and the rate of technological progress
gt+1 for a constant small population Llt and constant surving infant probability πt. The
curve gt+1 = g(et, L

l
t) describes the e�ect of education on the rate of technological

progress as presented in (12). The curve et+1 = e(gt+1, πt) describes the e�ect of the
expected rate of technological progress on optimal education choices derived in Lemma
2. The intersection between the two curves is the globally stable steady state equilibrium
(0, gl). This �gure implies that, in early stage of development, the economy is in the
vicinity of this steady state in which education is zero and the rate of technological
progress is very low. It can also be predicted that the infant mortality rate would be
high due to the low education of their parents. And hence from Proposition 1, the
fertility rate would be high but the surviving children would be low. This prediction is
consistent with the historical fact of thousand of years of Malthusian stagnation.

Figure 8. The evolution of technology and education for a moderate population

Figure 8 describes the evolution of education and the technological progress when
the population has grown to reach a moderate size. The system now is characterized
by multiple steady state equilibria. The steady state equilibria (0, gl) and (eh, gh)
are locally stable, whereas (eu, gu) is unstable. Given the initial conditions with low
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education and low rate of the technological progress, in the absence of large shocks the
economy remains in the vicinity of the low steady state equilibrium (0, gl) in which
education is still zero but the rate of technological progress is moderate. This �gure
also suggests an idea to interpret the fact acrossing countries that some countries have
high education level as well as high growth rate of technological progress associated
with low fertility rate (and hence low population growth), while some other countries
have low education level as well as low growth rate of technological progress associated
with high fertility rate.

Figure 9. The evolution of technology and education for a large population

Figure 9 describes the evolution of education and the rate of technological progress
when the population grows to a high level. The system is characterized by a unique
globally stable steady state equilibrium (eh, gh). So in the mature stage of development,
the economy converges monotonically to this steady state with high levels of education
and technological progress.

3.2. The evolution of infant surviving probability along with technological

progress

It is worthy to investigate the evolution of the infant surviving probability to understand
the oscillation of fertility rate over time and understand why in the history the infant
mortality rate is high. We have

πt = π(et, Et) = π(e(gt, πt−1), Et)

∂πt
∂gt

=
∂π(et, Et)

∂et

∂e(gt, πt−1)

∂gt
+
∂π(et, Et)

∂Et
.
∂Et
∂Pt

.
∂Pt
∂At

.
∂At
∂gt

=
∂π(et, Et)

∂et

∂e(gt, πt−1)

∂gt
− ∂π(et, Et)

∂Et

∂Pt
∂At

At−1 (17)
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3.2.1. Small population

We assume that for the very early stage of development, population is small, and the
technology progress is very low, which is characterized by gt < ĝ and At � 1, then
∂e(gt,πt−1)

∂gt
= 0 and hence,

∂πt
∂gt

= −∂π(et, Et)

∂Et

∂Pt
∂At

At−1 < 0

This implies that in the very early stage of development the surviving probability of
children is a decreasing function of technological progress. It is that when technoligical
progress was low enough that agents were not invested in education by their parent from
previous period, t − 1, while technological progress in period t makes the enviroment
more polluted. As the result, the pollution su�ers infants without compensation from
education of their parent. In this case, as showed in the Proposition 1, the number
of children born per agent increases and the number of surviving children per agent
decreases.

3.2.2. Moderate population

For moderate population (Figure 8) there are two possibilities. If the rate of technolog-
ical progress is still low enough, the economy converges to very low and stable steady
state which is characterized by e = 0 and g ≤ ĝ. In this case the evolution of infant
surviving probability is similar to the one in the case of small population.

If the rate of technological progress is large enough, g > ĝ, we consider two cases of
technological level

(i) If At ≥ 1 then ∂Pt
∂At

< 0, and hence

∂πt
∂gt

=
∂π(et, Et)

∂et

∂e(gt, πt−1)

∂gt
− ∂π(et, Et)

∂Et

∂Pt
∂At

At−1 > 0

In this case there are two e�ects, which reinforce each other, on surviving probability
of infant. Firstly, the expected technological progress in period t is large enough makes
agents from period t− 1 having incentive to invest in education for their children. As a
result, the more education the agents in period t are, the larger the surviving probability
of their children is. Secondly, technological progress makes the economy less polluted,
and hence the better environment quality has positive e�ect on the surviving probability
of children.

(ii) If At < 1 then ∂Pt
∂At

> 0,
In this case there are two e�ects, which o�set each other, on surviving probability

of infant. Firstly, the expected technological progress in period t is large enough makes
agents from period t− 1 having incentive to invest in education for their children. As a
result, the more education the agents in period t are, the larger the surviving probability
of their children is. Secondly, technological progress makes the economy more polluted,
and hence the worse environment quality has negative e�ect on the surviving probability
of children. Hence, the impact of technological progress on surviving probability of
children depends on which e�ect (education or environment) dominates the other.
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3.2.3. Large population

For a large population, as shown in �gure 9, the economy converges to the steady state
equilibrium (eh, gh) where gh > ĝ and eh > 0. It is reasonable to assume in this case
that At ≥ 1, hence ∂Pt

∂At
< 0 and then

∂πt
∂gt

=
∂π(et, Et)

∂et

∂e(gt, πt−1)

∂gt
− ∂π(et, Et)

∂Et

∂Pt
∂At

At−1 > 0

So this case is exactly similar to the case in (1) of subsection 3.2.2 in which two e�ects
(education and environment) reinforce each other to raise the surviving probability of
children along with the increase in the growth rate of technological progress.

3.3. The Dynamics of surviving probability of children

Now we investigate the dynamics of surviving probability of children to study its oscil-
lation over time. We have

∂πt
∂πt−1

= πe(e(gt, πt−1), Et).eπ(gt, πt−1) < 0

We know that for any given Et, πt is bounded in the interval [0, 1], so the explosiveness
in the dynamic of the infant surviving probability is impossible. So it seems reasonable
to assume that the slope of the curve π(e(gt, πt−1), Et) with respect to πt−1 has absolute
value less than one, which implies that ∂πt

∂πt−1
> −1. So for any given environmental

quality Et = E ∀t, there would be a convergence of the infant surviving probability
which display an oscillation (see �gure 10).

Figure 10. The convergence of infant surviving probability

Economically, the higher (lower) the infant surviving probability in period t (i.e. πt)
is, the higher (lower) the number of surviving children is also (as stated in Proposition
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1). Then, for a given potential income of the household, the education invested for
each child would be lower (higher), resulting in a negative (positive) e�ect on the infant
surviving probability in the next period, πt+1.

3.3. Global Dynamic

The global dynamic of the economy is characterized by {nt, et+1, ht+1, gt+1, At+1, Lt+1, Et+1, Pt+1, πt}∞t=0,
for given initial conditions e0, A0, L0, E0, which satis�es the following system of nine
equations

nt =
γ

φb

πt
+ φq + φeet+1

πt = π(et, Et)

he(et+1, gt+1)[
φb

πt
+ φq + φeet+1]− φeh(et+1, gt+1)

{
= 0 if et+1 > 0

≤ 0 if et+1 = 0

ht+1 = h(et+1, gt+1)

gt+1 = g(et, Lt)

At+1 = (1 + gt+1)At

Lt+1 = ntLt

Et+1 = Et + Ω(Et)− Pt+1

Pt+1 =


(

(1−α)Aρt+1a(Et+1)

a′(Et+1)[αHρ
t+1+(1−α)(At+1Pt+1)ρ]

) 1
1−ρ

if 0 < At+1 < 1(
(1−α)a(Et+1)

a′(Et+1)[α(At+1Ht+1)ρ+(1−α)P ρt+1]

) 1
1−ρ

if At+1 ≥ 1

The system of nine equations above is rather complex since we face with some
implicit functions of infant surviving probability, human capital formation, growth rate
of technomogical progress, environmental regeneration, and aggregate pollution. To
study the global dynamics we need parametric forms, which is suggested in the next
section, for these functions. And then a simulation should be carried out.
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4. Suggestion for a numerical study

So far we have presented the theoretical model where some functions are de�ned im-
plicitly. To be able to simulat the model we have to reveal the parametric functional
forms for h(et+1, gt+1), g(et, Lt), π(et, Et), Ω(Et), and a(Et). It is hard to come up with.
We inherit develop the work by Lagerlof (2007) for the functional forms of h(et+1, gt+1)
and g(et, Lt) which seem intuitive

ht+1 =
τφq + φeet+1

τφq + φeet+1 + gt+1

(18)

where, as in Lagerlof (2007), τ ∈ (0.1) is exogenous and can be interpreted as a part
of the �xed time cost, φq, that helps build human capital, so that τφq + φeet+1 can be
thought of as e�ective education. Applying the expression de�ning optimal education
in (9) to parametric form in (18), we can derive tha optimal education level, et+1, as

e(gt+1, πt) = max

0,

√
gt+1(φ

b

πt
+ (1− τ)φq)− τφq

φe


Next, let technological progress take the form

gt+1 = g(et, Lt) = (τφq + φeet)ξ(Lt)

where ξ′(Lt) > 0. The scale e�ect could take the functional form as

ξ(Lt) = min{θLt, ξ∗}
where θ, ξ∗ > 0. This implies that the population a�ects technological progress linearly
for Lt ≤ ξ∗/θ, and then stays �at.

Let the surviving probability of children at birth take the form

πt = π(et, Et) =
et + Et

1 + et + Et
and the renewable function of environment

Ω(Et) = −E2
t + βEt + ω

where β, ω > 0. And the total factor productivity takes the form

a(Et) = Eσ
t , σ ∈ (0, 1)

Hence the dynamics of education for a �xed population is

et+1 = e(gt+1, πt) = max

0,

√
(τφq + φeet)ξ(Lt)(

φb

πt
+ (1− τ)φq)− τφq

φe

 ≡ %(et, Lt)

Now the system of global dynamics become
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nt =
γ

φb

πt
+ φq + φeet+1

πt = π(et, Et) =
et + Et

1 + et + Et

et+1 = e(gt+1, πt) = max

0,

√
(τφq + φeet)ξ(Lt)(

φb

πt
+ (1− τ)φq)− τφq

φe


ht+1 =

τφq + φeet+1

τφq + φeet+1 + gt+1

gt+1 = g(et, Lt) = (τφq + φeet)ξ(Lt)

At+1 = (1 + gt+1)At

Lt+1 = ntLt

Et+1 = Et − E2
t + βEt + ω − Pt+1

Pt+1 =


(

(1−α)Aρt+1[(1+β)Et−E2
t+ω−Pt+1]

σ[αHρ
t+1+(1−α)(At+1Pt+1)ρ]

) 1
1−ρ

if 0 < At+1 < 1(
(1−α)[(1+β)Et−E2

t+ω−Pt+1]
σ[α(At+1Ht+1)ρ+(1−α)P ρt+1]

) 1
1−ρ

if At+1 ≥ 1

5. Conclusion

This paper develops a uni�ed endogenous growth theory to explain the evolutions of
fertility, infant mortality, education, technology, pollution and growth of output along
the thousands of years of the human history. The model interprets qualitatively well
the take o� from a Malthusian stagnation regime, to a demographic transition and then
to a Modern Growth Regime in which the evolution of population is taken into account
from evolutions of both fertility and infant mortality. Any economy starts the process
of development with small population, very low level of technology and education will
be trapped in a very low stable steady state characterized by very low growth rate of
technological progress and zero-education. Because education is zero then the infant
surviving probability is low even though environment quality might be good. Then the
fertility rate is high due to the behavior of maximizing ultility of households. However,
the population growth is still very low. Because the growth rate of technological progress
is very low then there is no incentive for the households to invest in education for their
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children; and hence, along with small population, the growth rate of technological
progress will be kept low in the next period and so on, and the population continues
growing very slowly as well. This negative feedback loop locks the economy in very low
and stable steady state for thousands of years. After thousands of years of development
until the population size is moderate, the economy has possiblity to escape from the
trap to converge to a high stable steady state characterized by high education, high
growth rate of technological progress, low fertility rate and low infant mortality rate.

This paper treats pollution as an input for production of �nal output. During the
period of demographic transition, there exists a turning point of pollution thank to
accumulation of technology. When the level of technology is low, it associates with
pollution to produce �nal output; and the technological progress makes the environment
more polluted leading to lower the infant surviving probability and hence leading to the
households giving more birth. But when level of technology exceeds a threshold, which
is normalized by 1, the technology associates with aggregate human capital to produce
�nal output; and in this case technological progress makes environment cleaner leading
to an increase in infant surviving probability and hence leading to the households giving
less birth. It is suggested from this paper that environmental quality plays a crucial
role in demographic transition during the industrial revolution time in Western Europe.

The global dynamics of the system from theoretical model is quite complex and a
more profound quantitative analysis is still a big challenge at this step. So this paper
also suggests some functional forms for implicit functions in the theoretical model to be
able to carry a numerical study in order to support the predictions from the theoretical
model. Doing this simulation is still in my research agenda.
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Appendix

The Lagrangian for optimization problem of households

L = γ [ln(nt) + lnh(et+1, gt+1)] + (1− γ)ln(wtht(1− nt[
φb

πt
+ φq + φeet+1]))

+λ1wtht(1− nt[
φb

πt
+ φq + φeet+1]) + λ2nt + λ3et+1

The Kuhn-Tucker conditions

∂L
∂nt

=
γ

nt
−

(1− γ)[φ
b

πt
+ φq + φeet+1]

1− nt[φ
b

πt
+ φq + φeet+1]

+ λ1wtht[
φb

πt
+ φq + φeet+1] + λ2 = 0 (19)

∂L
∂et+1

=
γhe(et+1, gt+1)

h(et+1, gt+1)
− (1− γ)ntφ

e

1− nt[φ
b

πt
+ φq + φeet+1]

− λ1wthtntφ
e + λ3 = 0 (20)

λ1wtht(1− nt[
φb

πt
+ φq + φeet+1]) = 0 (21)

λ2nt = 0 (22)

λ3et+1 = 0 (23)

λ1, λ2, λ3 ≥ 0 (24)

It is straightforward to show that λ2 = 0 and λ1 > 0. In e�ect, if λ2 > 0 then nt = 0,
hence,

25



(1− γ)[
φb

πt
+ φq + φeet+1]− λ1wtht[

φb

πt
+ φq + φeet+1]− λ2 = +∞

which could not happen. Therefore, λ2 = 0.
The two �rst-order conditions now are

∂L
∂nt

=
γ

nt
−

(1− γ)[φ
b

πt
+ φq + φeet+1]

1− nt[φ
b

πt
+ φq + φeet+1]

+ λ1wtht[
φb

πt
+ φq + φeet+1] = 0 (25)

∂L
∂et+1

=
γhe(et+1, gt+1)

h(et+1, gt+1)
− (1− γ)ntφ

e

1− nt[φ
b

πt
+ φq + φeet+1]

− λ1wthtntφ
e + λ3 = 0 (26)

If λ1 > 0 then from (21) we have

nt =
1

φb

πt
+ φq + φeet+1

then (25) is equivalent to

γ[
φb

πt
+ φq + φeet+1] + λ1wtht[

φb

πt
+ φq + φeet+1] = +∞

which could not happen.

� If λ1 = λ3 = 0, then

nt =
γ

φb

πt
+ φq + φeet+1

he(et+1, gt+1)[
φb

πt
+ φq + φeet+1]− φeh(et+1, gt+1) = 0

� If λ1 = 0, λ3 > 0, then

nt =
γ

φb

πt
+ φq + φeet+1

(27)

γhe(et+1, gt+1)

h(et+1, gt+1)
− (1− γ)ntφ

e

1− nt[φ
b

πt
+ φq + φeet+1]

= −λ3 < 0 (28)

Equations (27) and (28) give us

he(et+1, gt+1)[
φb

πt
+ φq + φeet+1]− φeh(et+1, gt+1) < 0
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