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Abstract

There is a growing interest in multi-sector models that combine aggregate balanced

growth, consistent with the well-known Kaldor facts, with systematic changes in

the relative importance of each sector, consistent with the Kuznets facts. Al-

though variations in the income elasticity of demand across goods played an

important role in the initial attempts, recent models stress the role of supply-

side factors in this process of structural change. Along these lines, Ngai and

Pissarides (American Economic Review, 2008) focus in differential productivity

growth across sectors while Acemoglu and Guerrieri (Journal of Political Econ-

omy, 2008) stress differences in factor proportions and capital deepening. We

explore a general framework that encompasses, as special cases, these two supply-

side mechanisms. Our model uncovers an additional driving force for structural

change based on differences in the degree of capital-labor substitutability. When

the flexibility to combine capital and labor varies across intermediate goods and

the final sector is Cobb-Douglas, as the economy grows the fraction of capital

(labor) allocated to the sector with high elasticity of substitution increases (de-

creases). We provide some casual evidence consistent with this new mechanism.

JEL Classification: O40, 041, O30
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1 Introduction

The theoretical literature on economic growth has been traditionally interested in models

that exhibit a balanced growth path, a trajectory where the growth rate of output, the

capital-output ratio, the return to capital, and the factor income shares are constant. It

has become standard in this literature to impose restrictions on preferences and technology

to be consistent with these Kaldor facts (Kaldor, 1963). Nonetheless behind this balanced

process at the aggregate level there are systematic changes in the composition of output at

a more disaggregated level, indicating a secular process of structural change. The seminal

work of Clark (1940) and Kuznets (1966) already documented a facet of this structural

transformation, particularly the continuous decrease in the share of agriculture in output

and employment that accompanies long-run increases in income per capita. More recently,

several authors (see for instance Kongsamut et al. 2001; Buera and Kaboski, 2011) drew

attention to the increasing importance of the service sector. This second set of empirical

regularities associated with the process of structural change has been dubbed by Kongsamut

et al. (2001) as the Kuznets facts.

The recent years have witnessed several attempts to develop multi-sector growth mod-

els that integrate both sets of regularities, the Kaldor and Kuznets facts. This literature,

inspired by the early contributions of Baumol (1967) and Matsuyama (1992), has identified

several channels behind this process of structural transformation that still deliver a balanced

growth path. Attending to these channels, one can classify these attempts into two cat-

egories: preference-driven and technology-driven structural change.1 In the first category

(see for instance Kongsamut et al. (2001) or Foellmi and Zweimüller (2008)), structural

change is driven by differences in the income elasticity of demand across goods.2 As cap-

ital accumulates and income rises these differences shift demand, and therefore resources

and production, from goods with low demand elasticity, such as food or neccesities, to high

demand elasticity goods, such as services or luxuries. In the second category, where tech-

nological differences across sectors play the dominant role, two alternative mechanisms have

been identified. The first mechanism, recently formalized by Ngai and Pissarides (2007),

1Most papers assume a closed economy framework. In this context, the interaction between preferences

and technology determine sectoral allocations. In an open economy, given world prices, sectoral allocations

are only determined by the supply side of the model. See Matsuyama (1992) and Ventura (1997) for models

of structural change in an open economy and Alvarez-Cuadrado and Poschke (2011) for the relevance of the

closed-economy assumption in the context of structural change out of agriculture.
2There is a large body of work that assumes non-homotheticity as a source for structural change. See

for instance Echeverria (1997), Laitner (2000), Caselli and Coleman (2001), Gollin, Parente and Rogerson

(2007), and Restuccia and Duarte (2010).
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hereafter NP, works through differences in the rates of TFP growth across sectors. The

second mechanism, explored by Acemoglu and Guerrieri (2008), hereafter AG, places its

emphasis on sectoral differences in factor proportions, i.e. the elasticity of output to capital

is different across sectors. Consequently, as sectoral levels of TFP diverge or capital accu-

mulates, these differences generate a process of structural change and unbalanced growth at

the disaggregate level that is still consistent with the Kaldor facts.3

The main objective of this paper is to explore an additional source for technology-driven

structural change consistent with balanced growth at the aggregate level: we focus on sec-

toral differences in the elasticity of substitution between capital and labor. Intuitively, if the

degree of flexibility to combine capital and labor varies across sectors, the secular change in

the relative price of factors of production would lead to systematic changes in the sectoral

composition of output. In this paper, we formalize this simple intuition. As we will demon-

strate below, as the aggregate capital-labor ratio increases, the more flexible sector (i.e., the

sector with the higher elasticity of factor substitution) is in a better position to substitute

away from the relatively more expensive input, labor, into the relatively cheaper one, capital,

than the less flexible one. As a result differences in the sectoral elasticity of substitution

between capital and labor induce, in response to the secular increase in the aggregate capital

stock, a process of structural reallocation of resources across sectors.

Our exercise was initially motivated by the trends documented in the factor income

shares at the sectoral and industry levels. Zuleta and Young (2010) construct the labor

income shares for agriculture, manufactures and services between 1958 and 1996 using data

from the US 35-KLEM database (Jorgenson, 2007). Over this period the labor income

shares within the agricultural and manufacturing sectors fell by roughly 31 and 8 percentage

points respectively, while the labor income share within the service sector increased by 2

percentage points. This process was accompanied by a decrease in the agricultural and

manufacturing shares of value added in GDP of 3 and 9 percentage points respectively while

the service sector’s share of value added in GDP increased by more than 16 percentage

points.4 The above-mentioned trends in factor income shares at the sectoral level contrast

with the relative constancy of their aggregate counterparts.5 There is further evidence of

3Baumol (1967) suggests several mechanisms behind structural change, specifically "innovations, capital

accumulation, and economies of large scale" (pg. 415). Recently, Buera and Kaboski (2011) developed a

model where structural change results from differences in the scale of productive units across sectors. This

is yet another source of technology-driven structural change.
4Zuleta and Young (2010) exclude construction, mineral industries and government enterprises from their

calculations.
5This relative constancy of the aggregate labor income share over long intervals of time is consistent

with its medium and high frequency variation documented for instance by Blanchard (1997), Caballero and
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these uneven patterns at an even finer level of disaggregation. Figure 1 reproduces the labor

income share for two selected US industries, chemicals and renting machinery and equipment,

and for the aggregate economy. Not surprisingly, the same trends reported at the sectoral

level are present at the industry level. The crucial role played by the elasticity of substitution

for the evolution of the factor income shares suggests that this elasticity may also play an

important role in the process of structural change.6

We present a two-sector version of the Solowmodel, along the lines of Jensen (2003). Final

output is produced using a CES aggregator that combines two intermediate inputs, which are

themselves sectoral outputs produced under two different CES production functions that use

capital and labor. Under alternative parameter restrictions, we use this simple framework

to capture the essence of the two different supply-side mechanisms stressed in the previous

literature and to uncover a new one.

A first case, along the lines of the AG model, arises when the elasticity of substitution

in the production of final output is less than one (i.e., the two intermediate inputs are not

close substitutes) and sectoral outputs are produced using Cobb-Douglas technologies that

differ in terms of capital intensity. In this case, as capital accumulates the fractions of

capital and labor allocated to the more labor-intensive sector increase. Intuitively, as capital

accumulates, if the fraction of resources allocated to each sector were kept constant, then

output in the more capital-intensive sector would grow faster. This imbalance would cause

a sharp drop in the relative price of the output of the fast growing sector, shifting resources

(labor and capital) into the production of the labor-intensive intermediate good.

A second case, a version of the NP model, arises when the elasticity of substitution in

the production of final output is less than one and sectoral outputs are produced using

identical Cobb-Douglas technologies up to sector-specific rates of TFP growth. For the sake

of illustration let the rate of TFP growth in sector 2 be higher than that in sector 1. Then as

the sectoral levels of TFP diverge, the fractions of capital and labor allocated to sector 1 must

increase through time. Intuitively, since TFP growth is higher in sector 2, if the fractions

of capital and labor allocated to each sector remained constant, output would grow faster

in sector 2. Then its relative price would be falling more than proportionately, since both

intermediate goods are strongly complementary in the production of final output, a version

of Baumol’s cost disease. As a result, capital and labor must move into the technologically

Hammour (1998) and Bentolila and Saint-Paul (2003).
6Recall that this elasticity was first introduced by Hicks in his seminal work, The Theory of Wages

(1932), to explore the distribution of income between factors in a growing economy. Pitchford (1960) was

the first to systematically analyze the relationship between the CES production function and the possibility

of permanent growth in a neoclassical model of capital accumulation.
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laggard sector 1.7

The third case, which illustrates our new mechanism, arises when the final output is

produced under the Cobb-Douglas technology, and the sectoral technologies are identical

except for the sectoral elasticity of substitution between capital and labor. For expositional

purposes, let the elasticity of substitution of sector 2 —the flexible sector— exceed that of

sector 1. In this case, as the aggregate capital-labor ratio increases, the fractions of capital

and labor allocated to the flexible sector move in opposite directions: the flexible sector

absorbs more capital and releases labor. Intuitively, as capital accumulates, the ratio of the

wage rate to the rental rate increases and the flexible sector will tend to substitute from the

now more expensive input, labor, towards the relatively cheaper one, capital, at a higher

rate than the less flexible sector 1 is able to do. In the context of this simple framework,

we characterize a balanced growth path consistent with the Kaldor facts. In contrast to the

NP and AG models, where sectoral factor allocations become asymptotically trivial, in the

unequal capital-labor substitution model the long run fractions of employment and capital

remain positive in both sectors. These results, derived under a constant saving rate, readily

extend to an optimal saving environment.

Furthermore, it is worth noticing that the differences in the degree of factor substitution,

although related to the differences in factor proportions stressed by the AG model, are

clearly distinct, both conceptually and in terms of its implications as we have discussed

in the previous paragraph. Conceptually, for a given factor price, factor proportions are

determined by the interaction between the elasticity of substitution and the distributive

parameter (the  in the Cobb-Douglas technology). AG focus on the sectoral differences in

this latter parameter, while our model stresses the differences in the former.

Finally, the mechanism illustrated in this paper is related to that of Ventura (1997) and

the recent literature on capital-skill complementarity initiated by Krusell, Ohanian, Rios-

Rull and Violante (2000). Ventura (1997) presents a multi-country growth model where final

output is produced combining two intermediate goods, one of which is produced using only

capital and while the other uses only labor. There is free trade in both intermediate goods,

although international factor movements are not permitted. In this context, as a country

accumulates capital, resources are moved from labor-intensive to capital-intensive uses, a

process of structural change, while international trade converts this excess production of

capital-intensive goods into labor-intensive ones. Krusell et al. (2000) present a neoclassical

7A similar, but opposite, reasoning applies when the elasticity of substitution of the final sector exceeds

unity, i.e. when sectoral outputs are close substitutes in the production of the final output, in either the

NP model or the AG model.
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growth model where the elasticity of substitution is higher between capital equipment and

unskilled labor than between capital equipment and skilled labor. As a result, as capital

accumulates the wage for skilled workers increases at a higher rate than that of unskilled

ones. They use this differential response of wages to rationalize the increase in skill premium

over the last 30 years of the past century.

The paper is organized as follows. Section 2 sets out the basic model and explores the

three cases we have just discussed. Section 3 presents the solution under optimal saving for

the model with unequal sectoral capital-labor substitution. Section 4 provides suggestive

evidence and explores some additional issues. The conclusions are summarized in section 5

while the Appendices include most of the proofs and some technical details.

2 A general model of structural change

We model a closed economy where a unique final good is produced under perfect competition

by combining the output of two intermediate-good sectors, 1 and 2, according to a CES

technology with elasticity of substitution  ∈ [0∞):

 () =  (1 ()  2 ()) =
h
1 ()

−1
 + (1− )2 ()

−1


i 
−1

(1)

where  ∈ (0 1) is the distributive share.8 Both intermediate-good sectors use two inputs,
labor, , and capital, . The labor force grows at a rate  and capital depreciates at a

rate . The aggregate resource constraint requires that the sum of consumption, , and

investment, , be equal to output of the final good.

̇ () +  () +  () ≡ () + () =  () (2)

where the dot denotes the rate of change in a variable.

Under the assumption that a fixed fraction of output, , is saved and invested every

period, equation (2) yields the following law of motion for the capital stock,

̇ () =  ()−  ()  (3)

The two (intermediate) goods are produced competitively according to

1 () =
h
(1− 1) (1 ()1 ())

1−1
1 + 11 ()

1−1
1

i 1
1−1

(4)

8When  = 1, this equation becomes  = 

1 

1−
2 .
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2 () =
h
(1− 2) (2 ()2 ())

2−1
2 + 22 ()

2−1
2

i 2
2−1

(5)

where  ∈ (0 1)  ∈ [0∞)  and  are respectively the distributive share, the

elasticity of substitution, and the levels of technology, employment, and capital for sector

.9 Both inputs are fully utilized:

1 () + 2 () =  () 

1 () +2 () =  () 

Technological progress in each sector is exogenous and exhibits a constant growth rate:

̇ ()

 ()
=  > 0  = 1 2 (6)

This general set up includes, as special cases, several of the mechanisms described in the

theoretical literature on structural change. First, AG present a model of structural change

(and non-balanced growth) driven by differences in factor proportions and capital deepening.

The distinctive features of their model are recovered by setting  6= 1 1 = 2 = 1 and

1 6= 2. Second, NP present a model of structural change driven by different sectoral TFP

growth rates. Their model is recovered setting  6= 1 1 = 2 = 1 1 = 2 and 2  1

Third, a novel mechanism, based on differences in the degree of capital-labor substitutability

across sectors, is identified under the following parametric restrictions:  = 1 1 = 2 and

1 6= 2 In the next section we will derive some previous results and present new ones.

2.1 Competitive solution

Let us denote the rental rate, the wage rate, the prices of the intermediate goods and the

price of the final good by  ≡ + , , 1 2 and  respectively.
10 We solve for the demand

functions for the intermediate goods under perfect competition by maximizing output (1)

subject to the zero profit condition 11 + 22 =  . The first order conditions for this

problem, where  is the Lagrange multiplier, are given by,



µ
1



¶− 1


= 1 (7)

(1− )

µ
2



¶− 1


= 2

9Again, the possibility that  = 1 is admitted, for one or for both sectors.
10We drop the time indicators when there is no risk of ambiguity.
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where  =
1


 These conditions imply the following demand functions, final good price (that

we normalize to one) and sectoral prices,

1 =

µ
1



¶−
 (8)

2 =

µ
2

(1− )

¶−


 = 1
1


+ 2

2


=
£
1−1 + (1− )


1−2

¤ 1
1− ≡ 1 (9)

1 = 

µ
1



¶−1


(10)

2 = (1− )

µ
2



¶−1


that might be useful for future reference.

Following AG we break the solution of our problem into two steps. First, given the vector

of state variables at any point in time, (1,2), the allocation of factors across sectors

is chosen to maximize final output, (1). This is the static problem. Second, given factor

allocations at each date, the time path of the capital stock follows the law of motion (3).

The dynamic problem consists of examining the stability of this process.

2.2 The static problem

At any point in time, the free mobility of capital and labor implies the equalization of the

value of the marginal products of each factor

1

µ


1

¶ 1

µ
1

1

¶ 1
1

= (1− )2

µ


2

¶ 1

µ
2

2

¶ 1
2

=  (11)

 (1− 1)

µ


1

¶ 1

µ
1

1

¶ 1
1


1−1
1

1 = (1− ) (1− 2)

µ


2

¶1

µ
2

2

¶ 1
2


2−1
2

2 =  (12)

The solution to the static problem amounts to the determinination of the sectoral allocations

of capital and labor. It will prove useful to define the shares of capital and labor allocated

to sector 1 as

 () ≡ 1 ()

 ()
and  () ≡ 1 ()

 ()
 (13)

Combining (11), (12) and (13) we reach,
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 ( 12) = − (1− )
1
2

⎡⎣ 

1− 

1

2


1
1
−1


1


1
2
−1


2


1−2
12

⎤⎦1 = 0 (14)

 ( 12) = − (1− )
1
2

⎡⎣(1− 1)

(1− 2)

2

1


1−1
1

1


2−1
2

2

()
2−1
12


1
1

(1− )
1
2

⎤⎦1 = 0 (15)

where


1
1
−1


1


1
2
−1


2

=

h
(1− 1) (1)

1−1
1 + 1 ()

1−1
1

i −1
(1−1)


2−1
12h

(1− 2) (2 (1− ))
2−1
2 + 2 ((1− ) )

2−1
2

i −2
(2−1)

and  ≡ 


is the

aggregate capital-labor ratio.

2.2.1 Case 1: The Acemoglu-Guerrieri model

AG present a model of structural change driven by differences in factor proportions and

capital deepening. We set 1 = 2 = 1 and assume sector 1 is more labor intensive, that is

2  1. These sectoral differences in the capital income shares are the distinctive feature

of the AG model. Furthermore, for expositional purposes, we focus on the case where both

intermediate inputs are close complements in the production of final output,   1. For the

moment, we restrict attention to the case where1 =2 = to abstract from the effect of

differences in TFP across sectors. Under these restrictions, equations (14) and (15) become

 (  ) = −
"
1 +

1− 



2

1

µ
1

2

¶ 1−


#−1
= 0 (16)

 =

∙
1 +

1

2

(1− 2)

(1− 1)

(1− )



¸−1
(17)

where
1

2
= 1−1 (1− )

−(1−2) 1 (1− )
−2 ()1−2 

From equation (17) we get




=

1

2

(1− 2)

(1− 1)

µ




¶2
 0 (18)

which shows that at each point in time the fraction of labor allocated to sector 1 is increasing

in the fraction of capital allocated to that sector.

Now we are in a position to evaluate how factor allocations change as the economy

accumulates capital, i.e. as the aggregate capital labor-ratio increases.
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Proposition 1. Assume 1 = 2 = 1 2  1 and   1. The fractions of capital and

labor allocated to the labor-intensive sector increase as the as the aggregate capital-labor ratio

increases:



=
1





()
=

(1− ) (2 − 1) (1− )

[1 + (1− ) (2 − 1) (− )] 
0 (19)

The reverse is true when   1

Proof. See Appendix A¥

The intuition for this proposition is best understood by considering the effects of capital

deepening in the absence of sectoral reallocation. Suppose that when the economy-wide

capital-labor ratio increases, the sectoral allocation vector ( ) were kept unchanged, im-

plying that the capital-labor ratio in each sector remained unchanged. Then the capital-

intensive sector 2 would grow more than sector 1 because an equi-proportionate increase in

capital raises the output of the capital-intensive sector by more.11 Since sectoral outputs are

close complements (substitutes) in the production of the final good when   1 (  1)  the

relative price would shift in favor of (against) the sector that grows by a smaller proportion,

the labor-intensive sector. This change in relative price induces a larger (smaller) fraction

of resources to be allocated to the labor-intensive sector 1.

2.2.2 Case 2: The Ngai-Pissarides model

NP present a model of structural change driven by differences in sectoral rates of TFP growth.

The basic features of their model are recovered by setting 1 = 2 = 1 and 2 = 1 =  As

before we focus on the case where   1 and assume the rate of growth of TFP is higher in

sector 2, i.e. 2  1, so that
2

1

grows through time.12 These differences in sectoral TFP

growth rates are the distinctive feature of the NP model. Notice that under these restrictions

equation (15) becomes,

 ( ) = − (1− )


(1− )
= 0 (20)

which implies that  =  hence capital-labor ratios are the same in both sectors,

1

1
=

2

2
=






11This is reminiscent of the Rybczinski Theorem in international trade theory.
12NP model an arbitrary number of sectors that produce a capital good and a variety of final consumption

goods. They define the instantaneous utility function as a constant elasticity aggregator of these consumption

goods. In our framework, the constant elasticity aggregator is replaced by the production function for final

output, and our two intermediate inputs play the role of their differentiated varieties.
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As a result equation (14) becomes,

 =

"
1 +

µ
1− 



¶µ
2

1

¶(1−)(−1)#−1
(21)

Now we are in a position to evaluate how the fraction of capital (and labor) in the slow TFP-

growth sector, sector 1, changes in response to the differential productivity growth across

sectors.

Proposition 2. Assume 1 = 2 = 1, 2 = 1 =  2  1 ≥ 0 and   1. Then

the fractions of capital and labor allocated to the technologically sluggish sector, sector 1,

increase as its relative level of total factor productivity decreases, i.e. as sector 1’s TFP falls

relative to sector 2’s TFP.





µ
2

1

¶ = 2
µ
1− 



¶

(1− ) (1− )

µ
2

1

¶(1−)(−1)−1
 0 (22)

The reverse is true when   1

Proof. The result is obtained by differentiating (21).¥

The intuition for this proposition is similar to the previous one. Suppose that when

the relative TFP grows there were no sectoral reallocation, i.e., ( ) were kept unchanged,

implying that the capital-labor ratio in each sector remained unchanged. Then the high TFP-

growth sector 2 would expand its output relative to sector 1. Since the sectoral outputs are

very complementary (substitutable) in the production of the final good when   1 (  1) 

the relative price of the good produced in the stagnant sector would increase more (less)

than proportionally, inducing a larger (smaller) fraction of both capital and labor to be

reallocated into that sector. Notice that, as in the AG model, the fractions of capital and

labor allocated to a sector either increase or decrease, but within each sector, both move in

the same direction.

2.2.3 Case 3: A model of unequal sectoral capital-labor substitution

Now, we turn to explore whether sectoral differences in the degree of capital-labor sub-

stitutability could lie behind the patterns of sectoral reallocation. We impose the following

restrictions. First we close the channels explored in the previous models by setting  = 1. As

it is clear from (19) and (22) when the production function for final output is Cobb-Douglas

neither capital deepening combined with differences in capital intensity nor differential TFP

11



growth lead to any sectoral reallocation. Second, we set 2 = 1 = . Finally, the distinctive

feature of this model is the sectoral differences in the elasticity of substitution between the

two factors of production. For the sake of tractability we restrict sector 1 to be Cobb-Douglas

and therefore we set 2 6= 1 = 1

Now equations (14) and (15) become,

 (  12) = − (1− )
1
2



1− 

µ
2



¶2−1
2

= 0 (23)

 (  12) = − (1− )
1
2 

1−2
2

2 ()
2−1
2



(1− )
1
2

= 0 (24)

where µ
2



¶2−1
2

= (1− )

µ
(1− )2



¶2−1
2

+  (1− )
2−1
2 (25)

Combining (23), (24) and (25) we reach, after some tedious manipulation, the following

relationship between the shares of capital and labor in sector 1,

 = () =
 (1− )

− 
with




= −

µ


1− 

¶µ
()



¶2
 0 (26)

(see Appendix C for a complete derivation). This is an important result that contrasts with

those of the two previous models. Equation (26) shows that the fraction of labor in each

sector is a decreasing function on the fraction of capital in that same sector.

Furthermore since  ≤ 1 and  ≤ 1 equation (26) determines the following feasibility
regions for the sectoral factor allocations,13

 ∈ [ 1] where 0   ≡ (1− )

1− 
 1 (27)

 ∈ [ 1] where 0   ≡ 

1−  + 
 1 (28)

Now we are in a position to evaluate how the fractions of capital and labor in the less flexible

sector respond to changes in the state variables.

Proposition 3. Assume  = 1 2 = 1 =  and, for the sake of exposition, let sector

1 be the less flexible sector, i.e. 2  1 = 1. Then the fraction of capital allocated to the

less flexible sector 1 falls (increases) as the economy’s aggregate capital-labor ratio increases

(TFP in Sector 2 increases), while its fraction of labor increases (falls). In particular,

13Similarly, using (17) and (20) one can determine the feasibility regions for the sectoral factor allocations

in the AG and NP models respectively. In both cases these regions span the whole unit interval, including

both end-points.
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=
(1− 2)

2()
 0 (29)




=

µ


1− 

¶µ
()



¶2
(2 − 1)
2()

 0 (30)



2

=
(2 − 1)
2()2

 0 (31)



2

=

µ


1− 

¶µ
()



¶2
(1− 2)

2()2

 0 (32)



1

=


1

= 0 (33)

where

() ≡
∙

1

2 (1− ())
+

1

()

¸µ
()



¶2µ


1− 

¶
+

∙
1


+

1

2(1− )

¸
 (34)

Notice that the inequality signs in (29)-(32) are reversed when sector 1 is the more flexible

one, i.e. 2  1 = 1.

Proof. Combining (24) with (26) and taking logarithms we reach,

1− 2

2
ln  =

1

2
ln(1− ())− ln() + 1− 2

2
ln2 + ln− 1

2
ln(1− ) (35)

The result is obtained differentiating (35) using (26).¥

Remarks on Proposition 3: (i) As  → , () → 1 and hence () → ∞. This
implies that as  → , both




and




→ 0. (ii) When the aggregate capital-labor ratio

increases, both sectoral capital-labor ratios, 1 ≡ 11 and 2 ≡ 22, also increase. (See

the Appendix C for a proof.)

In order to understand the logic of Proposition 3 let us first concentrate on the effects of

capital accumulation on the fractions of capital and labor allocated to each sector. As the

economywide capital-labor ratio increases, the ratio of wage rate to rental rate increases. As

a result, the more flexible sector tends to substitute away from the nowmore expensive input,

labor, towards the relatively cheaper one, capital, at a higher rate than the less flexible sector

1 is able to do. Consequently the fraction of capital allocated to the more flexible sector

—sector 2— increases while its share on labor employment decreases. Given full employment,

the converse is true for the less flexible sector 1. Changes in TFP in the Cobb-Douglas

13



sector, 1 leave the ratio of factor prices unchanged. In contrast, increases in 2, the

level of TFP in the more flexible sector, lower the price of effective labor, and, as a result,

the wage-rental ratio decreases. As before the more flexible sector 2, taking advantage of

this change in relative factor prices, moves into a more labor-intensive mode of production.

The response of input allocations in the model with differential capital-labor substitutability

contrasts with the responses in the previous two models. In both AG and NP, one of the

sectors was either shedding both capital and labor, or absorbing both, while, in this model,

each sector reduces its share of one of the factors while increases its share of the other.

Finally, and again in contrast to the previous two models, notice that structural change

takes place despite that the production function for the final output is Cobb-Douglas, i.e.

sectoral reallocations take place even when the expenditure shares on the intermediate goods

remain constant.

2.3 The dynamic problem

Now we turn to the characterization of the solution for the dynamic problem under our

three alternative parameterizations. For added generality, we now allow the sectoral TFP

growth rates to be different in the AG model, similar to what we have assumed for the NP

model. We assume that 2  1 ≥ 0. Under this restriction, sector 1 is the asymptotically
dominant sector in terms of employment of both factors. This results from the fact that

when   1 intermediate inputs are highly complementary in the production of final output

and therefore the slower-growing sector will determine the asymptotic growth rate of final

output.

In all three models, we introduce the key variable,

 () ≡  ()

 ()1 ()
(36)

which is aggregate capital per head deflated by the TFP level of the technologically laggard

sector. Then, using (3) we reach,

b ≡ ̇ ()

 ()
=

̇()

()
− −1 =

()

()
− −1 −  = 

 ()

()
− −1 −  (37)

While the dynamic equation (37) is common to all three models, we will see below that the

expression for  ()() differs across models.
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2.3.1 Case 1: Dynamics of the Acemoglu-Guerrieri model

Recall that this case arises when 1 = 2 = 1 and 2  1. Again, for expositional purposes

we will focus in the case where   1 and following our previous discussion we assume

2  1 ≥ 014

Proposition 4. Under the stated assumptions and given the initial conditions,  (0) =

0 and  (0) = 0, the solution to the dynamic problem satisfies the following system of

differential equations,

̂ ()= s () ()
1−1  ()1  ()1−1− ( + +1) (38)

̂ () =
(1−  ()) (2 − 1) (̂ () +2)

(1− )
−1
+ (2 − 1) ( ()−  ())

(39)

where  () = 


−1

∙
1 +

1

2

(1−  ())

 ()

¸ 
−1

and  () is given by (17).

Proof. See Appendix A¥

Let us define the following growth rates for the variables of interest (using an asterisk for

their asymptotic, steady state, counterparts),

̇ ()

 ()
≡  () 

̇ ()

 ()
≡  () 

̇ ()

 ()
≡  ()  for  = 1 2

̇ ()

 ()
≡  () 

̇ ()

 ()
≡  ()

We define a "constant growth path" (CGP) as a solution along which the aggregate

capital-output ratio,



, is constant.15 Then we have the following characterization of the

unique (non-trivial) CGP.

Theorem 1. Under the stated assumptions, there exists a unique (non-trivial) CGP with

14Notice that if 2 = 1 =  then by normalization we can write 1 =2 = , and using Proposition

1, we can treat  (and hence ) as a function of  We would then face a single first order differential

equation. In the derivations that follow we deal with the more general case where 2  1 ≥ 0
15Our definition is equivalent to that of AG and Kongsamut et al. (2001). The former paper requires

a constant consumption growth rate in a model of endogenous saving. The latter defines a "generalized

balanced growth path" as a trajectory along which the real interest rate is constant.
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the following properties,

∗ =

Ã



−1

 + +1

! 1
1−1

, ∗ = ∗ = 1

∗ = ∗ = ∗1 = ∗1 = +1 (40)

∗2 = ∗ +  (1− 2) (2 −1)  ∗2 = ∗ − (1− ) (1− 2) (2 −1) 

∗1 =  ∗2 = − (1− ) (1− 2) (2 −1) 

The steady state associated with this CGP is locally stable.

Proof. See Appendix A¥

A couple of results require further comment. First, the two intermediate sectors grow at

different rates even along the CGP if 2 6= 1. In this sense growth is non-balanced. This

unbalanced growth arises from the differential TFP growth rates across sectors. Notice that

if both sectoral TFP grew at the same rate, 1 = 2 = , then the steady state sectoral

per capita growth rates would coincide with the exogenous rate of TFP growth, 16 Second,

although the fractions of inputs in the asymptotically dominant sector 1,  and  tend in the

limit to one, sector 2 grows faster than the rest of the economy along the CGP. In this sense

both sectors will be permanently operative although the shares of capital and employment

in sector 2 become asymptotically trivial. Finally, as the economy asymptotically reaches

the CGP the process of sectoral reallocation ceases.

Remark on non-monotone behavior: A phase diagram analysis of the system of

differential equations (38) and (39) reveals that the time path of  and  can be non-

monotone. (See Appendix A.)

2.3.2 Case 2: Dynamics of the Ngai-Pissarides model

Recall that this case arises when 1 = 2 = 1 and 2 = 1 = . As before we restrict atten-

tion to the case where   1 Furthermore, let2  1 so that sector 1 is the asymptotically

dominant sector for the same reasons than in the previous model.

Proposition 5. Under the stated assumptions and given the initial conditions,  (0) =

0 and  (0) = 0, the competitive equilibrium satisfies the following pair of differential

equations,

̂ () =  () ()
1−1 − ( + +1) (41)

16Notice that the condition for balanced growth in the original AG model is 11 = 22 rather than

1 = 2 since AG specify TFP as Hicks neutral while in our equations (4) and (5) we model TFP as Harrod

neutral.
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̂ () = (1−  ()) (1− ) (1− ) (2 −1) (42)

where  () ≡
⎡⎣ () −1 + (1− )

Ãµ
2 ()

1 ()

¶1−
(1−  ())

! −1


⎤⎦


−1

.

Proof. See Appendix A¥
Let’s turn now to the characterization of the constant growth path.

Theorem 2. Under the stated assumptions, there exists a unique (non-trivial) CGP with

the following properties,

∗ =

Ã



−1

 + +1

! 1
1−1

 ∗ = ∗ = 1

∗ = ∗ = ∗1 = ∗1 = +1 (43)

∗2 = ∗ +  (1− ) (2 −1)  ∗2 = ∗ − (1− ) (1− ) (2 −1) 

∗1 =  ∗2 = − (1− ) (1− ) (2 −1) 

The steady state associated with this CGP is locally stable.

Proof. Notice that equation (42) does not contain the variable  and thus can be

analysed independently. This equation gives ̇ =  (1− ) (1− ) (1− ) (2 −1) which

is the familiar logistic equation with two steady states, ∗ = 1 and ∗∗ = 0. The first one is as-

ymptotically stable, and the second one is asymptotically unstable. As → 1  → 


−1 and

→ ∗. The CGP associated with the steady state (1 ∗) is locally stable since, evaluated

at this point,
b


= (− 1) (1− ) (2 −1)  0 and
b


= (− 1) ( + +1)  0.¥

As in the AG model, growth is non-balanced with the two sectors growing permanently

at different rates, the fractions of capital and labor allocated to the sector with high TFP

growth asymptotically vanish, and structural change asymptotically ceases as the economy

approaches the CGP. Nonetheless, this last feature is specific to our simplified version of the

NG model. In their original framework, with several sectors producing only consumption

goods and one sector producing consumption and capital goods, structural change among

the consumption-producing sectors can still take place along the CGP.

2.3.3 Case 3: Dynamics of the model of unequal sectoral capital-labor substi-

tution

Recall that this case arises when 2 6= 1 = 1 Furthermore, let  = 1, 2 = 1 =  and

1 () = 2 () =  () which implies 1 = 2 = . Combining (36), (24) and (26) we

reach the following one-to-one relationship between  and ,
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 = ((1− ))
2

2−1
(1− )

1
2−1

(− ) ( (1− (1− ))− )
1

2−1
(44)

where 0 ()  0 (resp. 0 ()  0) for all  ∈ ( 1) if 2  1 (resp. 2  1). Furthermore,
it is worth noticing that when 2  1,  (1) = 0 and lim→ () = ∞ and when 2  1,

 () = 0 and lim→1  () =∞

Proposition 6. Under the stated assumptions, given the initial condition  (0) = 0,

the competitive equilibrium path satisfies the following differential equation:

̇ =
()− ( ++ )

()
(45)

where

 ≡
∙
1− 



¸ (1−)2
2−1

( (1− ))
− (1−)

2−1  (46)

() ≡ (2−)(2−1) ( (1− (1− ))− )
(1−)
2−1

(1− )
1−
2−1

 (47)

and

() ≡ −
µ

1

2 − 1
¶ ∙

(1−  + )(− ) + 2 ((1− (1− ))− )

(− ) ((1− (1− ))− )

¸
(48)

where ()  0 (resp. ()  0) for all  ∈ ( 1) if 2  1 (resp. 2  1)

Proof. See Appendix A¥
Let’s turn now to the characterization of the constant growth path.

Theorem 3. Under the stated assumptions, there exists a unique (non-trivial) CGP that

satisfies

(∗) =
 ++ 


, ∗ =

 (1− )∗

∗ − 


∗ = ((1− ))
2

2−1
(1− ∗)

1
2−1

(∗ − ) (∗ (1− (1− ))− )
1

2−1

∗ = ∗ = ∗1 = ∗2 = ∗1 = ∗2 = ∗1 = ∗2 = +

The steady state associated with this CGP is locally stable.
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Proof. Notice that (45) is an autonomous differential equation with a unique (non-

trivial) steady state, ∗. The CGP associated with this steady state is locally stable since,

evaluated at that point,
̇


=

0(∗)
(∗)

 0¥

This theorem has several interesting implications. First, since the sectoral TFP growth

rates are identical, both sectors grow at the same rate along the CGP which, of course, is

the same as the growth rate of the aggregate economy. Second, the steady state fractions

of employment and capital are strictly positive in both sectors. As opposed to the previous

models where the fractions of employment and capital in the sector that sheds resources

asymptotically vanish, in this model both sectors reach the CGP with non-trivial shares of

employment and capital.17 Third, it is worth noticing that along the CGP the capital-output

ratio and the rental rate are constant, and as a result, so is the share of capital in national

income, while the wage rate grows at the exogenous rate of TFP growth, . Finally, as in

the AG model, once the economy reaches the CGP the process of sectoral reallocation comes

to an end.

3 Optimal growth under unequal sectoral capital-labor

substitution

In this section we extend the previous analysis to the case of optimal saving. Let  and 

denote consumption and gross investment respectively. Then

 =  + 

̇ =  −  −  =  − 

Let  be consumption per unit of effective labour,

 ≡ 


=





µ




¶
=






Then



=




− 


= ()− 



(where we have used (70)), and therefore the law of motion of capital per unit of effective

labour becomes,

̇ = ()− − ( ++ ) (49)

17Notice that when 1 = 2 = 0 the AG model also reaches non-trivial steady-state allocations of

capital and labor for both sectors. Nonetheless in this case growth eventually ceases. Similarly, non-trivial

allocations along the CGP of the NP model occur when 1 = 2 = , but in this case there is no structural

change and the initial fractions of capital and labor allocated to each sector remain constant forever.
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Let the instantaneous utility function,  ()  take the familiar CRRA specification where

1 (1− )  0 is the intertemporal elasticity of substitution of consumption. Then the

discounted life-time welfare of the representative household isZ ∞

0

−

µ




¶
 =

Z ∞

0

−
µ




¶
 =

Z ∞

0

−(−−)
µ




¶
 (50)

where  is the rate of time preference and we have used the fact that population and TFP

grow at the exogenous rates  and  respectively.

The solution to the optimal growth problem amounts to find the time path for  that

maximizes (50) subject to (49). Notice that given (44)  is a function of  and we can define

 () ≡ (()) (51)

Therefore (49) becomes

̇ =  ()− − ( ++ ) (52)

Thus, this optimization problem reduces to the standard optimal growth problem if  () is

a strictly concave and increasing function of  with  (0) = 0. Appendix B shows that  ()

does indeed satisfy these properties.

Define

 ≡  − − 

and assume that  is positive. Let  be the shadow price of  The Hamiltonian for this

problem is

 =



+  [ ()− − ( ++ )]

The necessary conditions are

−1 =  (53)

̇ =  [+  ++ −  0()] (54)

together with the transversality condition, lim
→∞

 exp (−) = 0 The interpretation of these
conditions is standard. Combining (53) and (54) we reach the familiar consumption Euler

equation,

̇ =


1− 
[ 0()− −  −− ] (55)

that together with (52), the initial condition,  (0) = 0, and the transversality condition

fully describe the dynamic evolution of the economy. The steady state satisfies,

 0(∗) = +  ++  (56)

∗ =  (∗)− ( ++ )∗ (57)

and the standard analysis applies.
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4 Some suggestive evidence and additional issues

Although the main focus of the paper is theoretical, in this section we provide some casual

evidence that illustrates the relevance of the mechanism highlighted by the model and we

discuss some further issues.

4.1 Factor-intensity reversals

If one assumes that sectoral production technologies are Cobb-Douglas or identical across

sectors, as in AG and NP, then the sectoral ranking of factor-intensity is invariant with

respect to the factor-price ratio; that is, if one sector is more capital-intensive than the other

at a given set of factor prices it will remain so at any set of factor prices. The absence of

factor-intensity reversals is a standard assumption in the trade literature (see, for instance,

Samuelson’s (1948, 1949) “Factor-Price Equalization Theorem”). Nonetheless, once one

allows for different degrees of substitutability between factors, the possibility of a factor-

intensity reversal, a situation where the ordering of sectors by capital-intensity varies with

the ratio of factor prices, reemerges.

Let  ≡ 

 + 
denote the wage-rental ratio. Assume 1 = 2 =  . Then (11) and

(12) imply the following capital-labor ratios for the two sectors,

1 ≡ 1

1
=

µ


1− 

¶1

1−11 (58)

2 ≡ 2

2
=

µ


1− 

¶2

1−22 (59)

Using (58) and (59) we can write the ratio of capital intensities as,

1

2
= 1−2 (60)

where  ≡
µ
1− 




¶2−1


It is evident from (60) that a factor-intensity reversal might occur only if the degree of

factor substitution varies across sectors. Furthermore, define the (time-varying) threshold

factor-price ratio, e ≡ 2−1 =


1− 


Then a factor-intensity reversal occurs as  crosses the threshold e. In particular, if 2  1,

we have

2  1 ⇐⇒   e
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As the wage-rental ratio increases, the more flexible sector 2 increases its capital-labor ratio,

becoming eventually, after the relative factor price crosses the threshold e more capital-
intensive than the less flexible sector 1.

On the empirical front, the possibility of a factor-intensity reversal was the subject of an

intense and inconclusive debate in the sixties. Comparing the rankings of capital-intensity for

similar U.S. and Japanese industries, Minhas (1962) concluded that factor-intensity reversals

were empirically relevant. By restricting the sample to a more homogeneous set of industries

Ball (1966) concluded that the adjusted rankings were not so dissimilar as to validate the CES

reversals result. Along similar lines, Hutcheson (1969) failed to reject the null hypothesis of

a common elasticity of substitution across industries, concluding that Minhas’ case against

the standard assumption of non-reversal of factor-intensity was not founded. In contrast,

Kurokawa (2010), in an attempt to explain the rising skill premium in the US, provides

convincing evidence of a skill-intensity reversal between the US and Mexico.

Our model provides a framework to review this question in the context of a growing

economy. The EU KLEMS database (O’Mahony and Timmer, 2009) provides capital-labor

ratios for 32 industries, and Balistreri et al. (2002) report estimates at the industry-level

for the elasticity of substitution using a 50 year panel compiled by the Bureau of Economic

Analysis. Based on these estimates and on the levels of capital intensity in 1978 we choose a

low elasticity sector, Rubber and Plastics, with estimates that range from 0.75 to 0.81, and a

high elasticity one, Electrical Equipment, with estimates that range from 2.9 to 3.7. Figure 2

reproduces the evolution of the capital-labor ratio for these two industries.18 At the beginning

of our sample the less flexible industry, Rubber and Plastics, was more capital-intensive than

Electrical Equipment. Between 1978 and 2007 the US aggregate capital-labor ratio increased

by almost one half. As a result the more flexible industry, Electrical Equipment, increased

its capital-labor ratio at a faster pace than the less flexible one. The reversal took place

around 1990 and thereafter the more flexible industry became also more capital-intensive.

Finally, when considering a long period of time one might wonder whether the observed

change in the factor-intensity ratio, 12, was driven by changes in the factor-price ratio or

was simply the consequence of productivity growth. Fortunately, the EU KLEMS database

18Since Balistreri et al. (2002) use two-digit SIC industry codes to estimate their elasticities of substitution

while our data for capital-labor ratios at the industry level uses the NACE classification codes, we need to

map these two sources. We match "Rubber and miscellaneous plastic products" (SIC code 30) and "Rubber

and Plastics" (NACE code 25). Unfortunately the EU KLEMS data does not include a direct match for

"Electronic and other electric equipment" (SIC code 36). As a result we use the closest, although slightly

broader, category of "Electrical and optical equipment" (NACE code 30-33).
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includes TFP estimates that suggest that TFP growth in Electrical Equipment outpaced by

a factor of four that of Rubber and Plastics. Given that the estimate of the elasticity of the

flexible sector exceeds unity we can discard differential productivity growth as a source for

the observed reversal.19

4.2 Structural change out of agriculture

The process of economic development is always and everywhere characterized by substantial

reallocations of resources out of agriculture. As a result of this process, the differences in

sectoral structure between developed and developing countries are staggering. On one side,

rich countries, such as the U.S., the U.K., or Belgium employ less than 3% of their labor

force in agriculture, while, on the other side, poor countries, such as Nepal, Burundi, or Niger

have employment shares in agriculture above 90%. These differences in employment shares

are compounded by important differences in labor productivity and capital intensity. As

Restuccia et al (2008) and Chanda and Dalgaard (2008) report, the differences in agricultural

labor productivity between rich and poor countries are twice as large than those in aggregate

labor productivity. Mundlak (2000) finds that the distributions of the various measures of

investment and capital show a much larger spread in agriculture than in the rest of the

economy. Table 1 and Figures 3 and 4 use data for 50 countries collected by Crego et

al. (2000) to illustrate the variation of sectoral capital-labor ratios across countries. In

rich countries agriculture is more capital-intensive than the rest of the economy, while the

reverse is true in poor economies.20 These differences in capital per worker across sectors

and countries are stunning. In the 5 richest countries our sample capital per worker outside

of agriculture is 14 times larger than in the 5 poorest countries, while in the agricultural

sector capital per worker is more than 500 times larger.21

Given the important cross-country variation in wage-rental ratios, one may interpret the

large sectoral variation in capital-labor ratios as the result of a relatively high elasticity

of substitution between inputs in agriculture. This interpretation is consistent with the

19Allowing for sector-specific TFP we can write (60) as
1

2
=

µ
1− 



¶2−1  (1−1)
1


(1−2)
2

1−2 . Assuming

2  1 sector 2 would correspond to Electrical Equipment in our example. Then for a productivity-driven

reversal, it is necessary that either 1  1 and ̂1  ̂2 or 2  1 and ̂2  ̂1. In view of the evidence

discussed, neither condition seems to be satisfied.
20The correlation coefficient between capital per worker and income per worker is 0.95.
21The five richest countries in our sample are the US, Canada, Denmark, Norway and Sweden, while the

five poorest ones are Tanzania, Malawi, Madagascar, Kenya and India. An example might help visualizing

how these differences come about, for instance the Lexion 590R, the world’s largest combine harvester, has

the capacity to harvest 1,800 bushels of wheat per hour. This capacity is equivalent of 540 man-hours.
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estimates provided by Behrman (1972) who finds that the elasticity of substitution in agri-

culture, although small, is roughly three times larger than the one in services.22 Rosenweig

(1988) implicitly acknowledges this substitution capability of agricultural production when

arguing that obstacles to migration out of agriculture depress rural wages inducing farmers

to substitute cheap labor for capital and intermediate inputs. Along similar lines Manuelli

and Seshadri (2003) provide evidence on the impact of low labor costs on the slow rate of

adoption of tractors in the U.S. agriculture between 1910 and 1940.

All this evidence suggests that the degree of flexibility in agricultural production may be

important. Figures 5 and 6 report the evolution of the shares of employment and capital in

agriculture for Chile and the Netherlands between 1967 and 1992. As opposed to previous

models of structural change (either technology driven as in NP and AG, or preference driven

as in Kongsamut et al. 2001), that imply that sectoral factor shares move in the same

direction, with sectors either increasing or decreasing their shares of both inputs, our model

provides a natural rationalization for the observed patterns where the agricultural sector’s

employment share decreases while its capital share increases23. This explanation combines

the flexibility to substitute capital for labor in agricultural production with the secular

increase in the relative price of labor. As the aggregate capital-labor ratio increases, the

more flexible sector, agriculture, takes advantage of the change in relative prices substituting

away from the relatively more expensive labor into the relatively cheaper capital. As a result

the employment share in agriculture decreases while its share in the aggregate capital stock

increases.

4.3 The aggregate elasticity of substitution

Evaluating the response of the economy-wide capital-labor ratio to changes in the factor-

price ratio requires a measure of the degree of substitutability between capital and labor

22Services seem to be the relevant alternative since most of the sectoral reallocation takes place between

these two sectors. For instance Kongsamut et al. (2001) report that the U.S. service employment share

increased from 25% in 1869 to 75% in 1999, while the agricultural employment share decreased substantially

over that period, from 50% to 2%.
23Notice that the actual patterns of sectoral reallocation most likely reflect a combination of several mech-

anisms which include differences in income demand elasticities, differential productivity growth, differences

in capital deepening and differences in the elasticities of substitution. Given that there is consensus on the

fact that the income demand elasticity of agricultural goods is below one and that TFP growth in agriculture

has outpaced that of the rest of the economy over the last half of the 20th century (see Alvarez-Cuadrado

and Poschke, 2011), one can conclude that the first two mechanisms tend to reduce the fractions of labor and

capital allocated to agriculture. Table 1 suggests that capital deepening is more important in agriculture

than in the rest of the economy. As a result the third mechanism tends to increase the fraction of labor

employed in the less flexible non-farm sector. Nonetheless, Dennis and Iscan (2009) find that the qualitative

importance of capital deepening is second order when compared to the other two mechanisms.
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at the aggregate level. Acemoglu and Guerrieri (2008) address this question by evaluating

the impact of capital accumulation on the capital share in national income. Since in their

model, under the assumption that   1, they find a negative relationship between those two

variables, they conclude that the economy-wide elasticity of substitution is less than one.

An attractive alternative way of evaluating this aggregate elasticity follows the dual

approach developed in Jones (1965).

Lemma 4.3.1

The aggregate elasticity of substitution is a weighted average (i.e. the coefficients add

up to one) of the three primary elasticities: the elasticity of substitution between the two

intermediate inputs in the production of the final good,  and the two sectoral elasticities,

1 and 2:

 = 0+ 11 + 22 (61)

where

0 ≡ (1 − 2) (− )

1 ≡ 1 + 1

2 ≡ (1− ) 2 + (1− ) 2

and  is the income share of factor  in sector .

Proof: See Appendix A¥

Although the primary elasticities are constant, in general the aggregate elasticity of

substitution, , varies with the sectoral composition of output with three notable exceptions.

First, when the three primary elasticities are equal,  = 1 = 2 the aggregate elasticity

is constant and equal to the primary ones. For instance, reinterpreting the production

function for final output as an utility aggregator, this happens when preferences and sectoral

technologies are Cobb-Douglas as in Antras and Caballero (2009). Second, it is constant and

equal to the elasticity of substitution in the final-good sector,  when one of the sectors uses

only capital and the other only labor as in Ventura (1997). And finally it is also constant

when the sectoral factor income shares and the sectoral elasticities are equal, i.e. 1 = 2

and 1 = 2 This last case includes the NP model where 1 = 2 = 1 and 1 = 2 = .

Intuitively, if factor income shares in both sectors are equal then the aggregate elasticity of

substitution is independent of the elasticity of substitution of the final sector, 0 = 0. As a

result, the aggregate elasticity reduces to a weighted average of the sectoral elasticities and

it is constant when both sectoral elasticities coincide.

25



The aggregate elasticity of substitution in the AG model, where 1 = 2 = 1, is given by,

 = 1 + (2 − 1) (− ) (− 1)  1⇐⇒   1 (62)

In this case the aggregate elasticity, which varies with the process of structural change,

exceeds unity if the elasticity of substitution between inputs in the final sector is above one.

Notice that (61) reduces to a weighted average of the elasticity in the final sector,  and 1.

As a result, whether the aggregate elasticity of substitution exceeds unity depends only on

the elasticity of substitution in the final-good sector.

A final interesting case arises under the parameterization used in the model of unequal

sectoral capital-labor substitution presented before where 2 6= 1 =  = 1. In this case, the

aggregate elasticity of substitution is given by,

 = 0 + 1 + 22  1⇐⇒ 2  1 (63)

where  is a weighted average of 1 and one of the sectoral elasticities, 2. So necessarily

  1 iff 2  1.

4.4 A numerical example

Since the actual patterns of structural change arise from a combination of several forces, of

which differences in the sectoral elasticity of substitution is only one, our goal in this section

is not to reproduce these patterns but rather to illustrate numerically some of the features

of the model. In order to focus on the impact of differences in the elasticity of substitution

we set both sectoral levels of TFP constant and equal to 1, 1 = 2 = 1. Furthermore,

we normalize the labor force to 1. For illustration purposes it proves convenient to track

the evolution of key variables in terms of the wage-rental ratio, . Notice that given , (58)

and (59) determine the sectoral capital-labor ratios,  () (where  = 1 2). These ratios

allow to calculate the sectoral factor income shares, given by  () =


 () + 
, then (4)

and (5) determine the levels of per capita sectoral output,  ()  and marginal products,

 0 ()  Combining these results with (11) determines the relative price of intermediate goods,

 () ≡ 1

2
=

 02 (2)
 01 (1)

 and imposing the sectoral market clearing condition that equates

relative supply,  ()
1

2
=  ()



(1− )

2 (2)

1 (1)
 to relative demand, given by (8), we recover

the sectoral factor allocations,  () and  ()  Finally, the aggregate labor income share and

capital-labor ratio are given by  = 1+(1−)2 and  = 


1 respectively. In order to

explore the evolution of these variables we need to choose specific values for four parameters;
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  1 and 2. Consistent with our goal, illustration rather than realism, we assume that

both intermediate inputs are equally important in the production of final output,  = 12,

and we set the distributional share of capital at one third,  = 13 for  = 1 2. Finally, we

set the sectoral elasticities around the Cobb-Douglas threshold with 1 = 08 and 2 = 12

and therefore we refer to sector 2 as the flexible one.24

Figure 7 presents the results of these simulations. As the aggregate capital-labor ratio

increases the rental rate falls relative to the wage and therefore the wage-rental ratio in-

creases. The flexible sector is in a better position to take advantage of this decrease in the

relative price of capital and, therefore, as capital accumulates the fraction of labor (capital)

that it employs falls (increases). Notice that when labor is relatively abundant, (for instance

 = 1), the flexible sector employs roughly 52.5% of the labor force and only 44% of the

capital stock but this situation is reversed as labor becomes relatively scarce. For instance

as  increases to 10 the flexible-sector share of labor falls by more than 6 percentage points

while its share in the capital stock increases by almost 16 percentage points. As a result, the

flexible sector is more labor-intensive (capital-intensive) when the aggregate capital-labor

ratio is low (high) than the less flexible sector. This change in the ranking of capital in-

tensities, a capital-intensity reversal, takes place when the aggregate capital-labor ratio is

equal to 1 (see (60)). The third panel of Figure 6 reports the evolution of the labor income

share. The relevant threshold to understand its evolution is given by the Cobb-Douglas case.

When the elasticity of substitution equals one, factor income shares are independent of rela-

tive factor prices. In this case an increase in the relative factor price leads to a proportional

decrease in the relative factor use, leaving the factor income shares unchanged. Now, since

the elasticity of the flexible sector exceeds one its labor income share, 2, falls with the

wage-rental ratio since a decrease in relative price of capital leads to a more than propor-

tional increase in the capital-labor ratio in this sector. The reverse is true in the other sector

where the elasticity of substitution is less than one and therefore its labor income share, 1,

increases as capital accumulates. Given our parameter choices, i.e. the equal importance of

both sectors for final production and the symmetry of the sectoral elasticities around one,

this third panel resembles the data reported in Figure 1, with sectoral factor income shares

moving in opposite directions while the aggregate labor income share is roughly constant.

24An additional issue concerns the range of  we consider in our numerical exercise. Figure 6 reports, in

most cases, values in the range  ∈ [2 20]. To get a sense of the meaning of this range, consider a Solow
model with  = 02  = 005 = 002 and  = 001, then if we move from 10% to 200% of the steady

state capital stock the wage-rental rate ratio increases from 2.5 to 16. If the same exercise is conducted

assuming  =  = 0 the wage-rental rate ratio increases from 2 to 17.5. Finally, a realistic parameterization

of a multi-sector CES model requires the normalization concept introduced by Klump and de La Granville

(2000).
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In general, aggregation dampens sectoral variation. In our example, sectoral variation (al-

most) perfectly cancels out at the aggregate level. The last panel of this figure presents

the evolution of the relative price of the intermediate goods and of the aggregate elasticity

of substitution. As the capital-labor ratio increases there is a tendency for the less flexible

sector to increase its production at a slower pace than that of the more flexible one, since

the elasticity of substitution in the final-good sector is one this relative scarcity of the less

flexible intermediate input leads to a continuous increase in its relative price. Finally, we

know from the previous analysis that the aggregate elasticity of substitution, , is simply

a weighted average of the sectoral elasticities. Nonetheless the weight placed on the flexi-

ble sector increases as capital accumulates and therefore  also increases with development.

This result is robust to alternative parameter configurations as long as the final sector is

Cobb-Douglas.25 Along these lines, Duffy and Papageourgiou (2000) use World Bank data

on capital stocks for 82 countries over 28 years to estimate the parameters of the CES. They

use 4 subsamples and they find that the elasticity of substitution increases with development.

In the view of our model, differences in sectoral elasticities coupled with the secular process

of capital accumulation might lie behind this relationship between flexibility in production

and the level of development.

5 Conclusions

We have developed a two-sector model where differences in the sectoral elasticity of substitu-

tion between capital and labor lead to a process of reallocation of resources. The mechanism

behind this model is simple. As the wage-rental rate ratio changes, more flexible sectors

—industries with a higher elasticity of substitution between capital and labor— are in a bet-

ter position to take advantage of these changes than less flexible ones. As a result if the

final-goods sector is Cobb-Douglas, as capital accumulates the flexible sector increases its

share in the aggregate capital stock while it reduces its share in employment. Despite this

process of structural change, the economy eventually reaches a constant growth path where

the fractions of employment and capital in both sectors are positive and constant. Both the

25We have conducted several simulations with  6= 1 The results are qualitatively similar to the general
patterns illustrated in figure 7. Nonetheless, two differences are worth mentioning. First, as the elasticity of

substitution in the final-goods sector falls well below unity, for instance   05 the relationship between the

AES and development is reversed. Second, for large values of the elasticity of substitution in the final sector,

for instance   2, the relationship between sectoral factor allocations and relative factor prices becomes

non-monotonic. As in the general case illustrated in figure 7, the fraction of capital allocated to the less

flexible sector, , falls as the wage-rental rate ratio increases but, in this case, the fraction of labor allocated

to this sector, , first increases and then decreases. The (high) flexibility to substitute intermediate inputs

in the production of the final good lies behind this non-monotonic adjustment.
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transitional behavior and the steady state configuration of the unequal capital-labor substi-

tution model are in sharp contrast with those of the existing models of structural change

that exhibit a CGP, specifically the AG and NP models.26 In these models, a sector is either

shedding both capital and labor or absorbing them and the sectoral shares of employment

and capital asymptotically vanish for certain sectors.

Additionally, we show how our main results extend to a Ramsey environment, where

saving is endogenous, and provide some suggestive evidence on the relevance of the mech-

anism stressed by this unequal capital-labor substitution model. Although our main focus

was analytical we relied on a numerical example to illustrate some of the key features of the

model.

The main contribution of this paper is theoretical and qualitative. A natural extension

would be to explore the quantitative importance of the mechanism stressed by the model for

the actual patterns of structural change. This will require a more realistic framework that

incorporates other sources of sectoral reallocation that seem to be qualitatively important

such as non-homothetic preferences and differential TFP growth. Furthermore, we could

explore numerically whether structural change is consistent with quasi-balanced growth, i.e.

whether changes in factor allocations are first-order (in magnitude) when changes in the

great ratios are already of second-order.

Additionally, although there are several papers that estimate the aggregate elasticity of

substitution, see Antras (2004) for a recent example, the empirical literature on the sectoral

elasticities is sparse. Another natural extension of our line of work would pursue the estima-

tion of these elasticities at different levels of aggregation. These sectoral estimates could be

used to contrast some of the predictions of the model. In principle, existing datasets, such

as the 35-industry KLEM developed by Dale W. Jorgenson and the EU-KLEMS gathered

by the Groningen Growth and Development Center, provide the sectoral level data required

for these estimations.

26In the model with non-homothetic preferences developed by Kongsamut et al (2001) exhibits similar

patterns. In the limit one of the sector dissapears and along the CGP sectors grow at different rates.
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Appendix A
Proof of Proposition 1. Differentiating (16), treating  as a function of , we obtain

+ ()() = 0

where

() = −
 (1− )

()

µ
1− 



¶
(2 − 1)  0

and

 = 1 + 2
1− 



2

1

µ
1− 



¶µ
1

2

¶1−


⎡⎢⎣(1− 1)





+ (1− 2)




(1− )

+
1


+

2

(1− )

⎤⎥⎦
= 1 +

µ
1− 



¶
[1 + (2 − 1) (− )]  0 since | (2 − 1) (− ) | ≤ 1

Therefore



()
= −()


= − (1− ) (2 − 1) (1− )

[1 + (1− ) (2 − 1) (− )] ()
 0

which is equivalent to (19).¥

Proof of Proposition 4. Log-differentiating (36) and using (3) we reach,

̂ = ̂ − −1 = 



− ( + +1) (64)

We must find an expression for



in terms of our two endogenous variables,  and . Notice

that (16) implies,

µ
1

2

¶ 1−


=

µ
1− 



¶µ


1− 

¶
1

2
(65)

and dividing both sides of (1) by 1 we have,



1
=

"
 + (1− )

µ
2

1

¶ −1


# 
−1

Combining these two expressions we reach,



1
= 


−1

∙
1 +

1

2

µ
1− 



¶¸ 
−1
≡ 

Then,
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 = 1 =  (1)
1−1 ()1 = 1−111−1 (66)

which, when combined with (64), yields (38).

Now using equation (65) we reach

̇


= −

µ
1− 



¶
(1− )

µ
1

2

¶
(67)

Since
1

2
= 1−1 (1− )

−(1−2) 1 (1− )
−2

µ




¶2−1 µ1

2

¶2−1
, we obtain

µ
1

2

¶
= (1− 1)





̇+ (1− 2)




(1− )

̇+ 1
̇


+ 2

̇

(1− )
+ (1 − 2) (̂+2) (68)

Substituting (68) into equation (67), using



=

1

2

(1− 2)

(1− 1)

µ




¶2
and




=

µ
1− 

1− 

¶µ
1

2

¶µ
1− 2

1− 1

¶


we arrive at

̇ = −
µ
1− 



¶
[̇ (1 + (1 − 2) (− )) +  (1− ) (1 − 2) (̂+2)]

which after some manipulation yields (39).¥

Proof of Theorem 1. Consider the curve b = constant. Differentiating (38) (keepingb = constant) we reach a positive relation between  and  along the b = constant schedule,



=

(1− 1)



⎛⎜⎝ 



+ (1− 1)





+

1



⎞⎟⎠
=

2 (1− 1)



µ


1− 


1−

1

2
+ (1− 2)

1

2
+ 1

¶  0 (69)

Thus this schedule is upward sloping in the space ( ). In particular, the curve b = 0 meets
the line  = 1 at

³



−1

++1

´ 1
1−1

 Below this curve, we have b  0. Setting (39) equal to

zero requires  (1− ) (2 − 1) (̂+2) = 0 which implies either  = 1 or ̂ 6= −2. The

latter case cannot be a steady state. Therefore the only non-trivial steady state allocation

of capital is ∗ = 1, i.e. the relevant b = 0 schedule that determines the steady state is
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the horizontal line  = 1 in the space ( ). Since the b = constant schedule is strictly

increasing in  there exists a unique (non-trivial) steady state given by (40).

The growth rates of the asymptotically dominant sector (and therefore of the overall

economy) are derived by combining the steady state solutions and the growth rates of the

exogenous variables with (13), (36), and (66). The growth rates for sector 2 are given by

the solution of the system of three equations on ∗2 
∗
2 and ∗2 that results from the log-

differentiation of (5), (11) and (12).

Now, we turn to the dynamic properties of this steady state. The linear approximation

of (38) and (39) around (40) is given by,

∙
̇

̇

¸
=

"
̇



̇


̇


̇


#
=∗
=1

∙
− ∗

− 1
¸
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= 1
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= ∗ (∗)1−1 (∗)1 (∗)1

⎛⎜⎝ 


∗
+ (1− 1)




∗
+

1

∗

⎞⎟⎠  0

̇


=

∗ (1− ∗) (2 − 1)
¡
∗ (1 − 1) (∗)1−1 (∗)1 (∗)1−2

¢
(1− )

−1
+ (2 − 1) (

∗ − ∗)
= 0

̇


=

∙
(1− 2) (2 − 1) (̂+2) +  (1− ) (2 − 1)

̂



¸
£
(1− )

−1
+ (2 − 1) (− )

¤−  (1− ) (2 − 1)
2
(̂+2)
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− 1

⎞⎟⎠
£
(1− )

−1
+ (2 − 1) (− )

¤2
= (1 − 2)2 (1− )  0

It follows that the determinant of the Jacobian is positive and its trace negative. As a result

the linear system has two negative eigenvalues and the steady state associated with this CGP

is locally stable.27 Global analysis using arrows shows that paths converging to the steady

state (∗ ∗) can display non-monotone behavior.

27Notice that when 2  1 then the determinant of the Jacobian would be negative and therefore the

steady state exhibits the saddlepoint property. Nonetheless, the steady state under evaluation, ∗ = ∗ = 1
was characterized under the assumption that sector 1 is the assymptotically dominant one. When one reverses

labor intensities one changes the assymptotically dominant sector and therefore the stability properties of
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Proof of Proposition 5. Using (64) we need an expression for



in terms of our two

endogenous variables. Under the NP restrictions, equation (1) can be written as,

 =
h
1

−1
 + (1− )2

−1


i 
−1

=

∙

¡
(1)

1−
()


¢ −1
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2
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i 
−1

where we have used the fact that the capital-labor ratios are identical across sectors, implying

 = . The preceding equation gives




=

µ


1

¶−1
−1
1

h

¡
1−
1 

¢ −1
 + (1− )
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−1
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⎡⎣ −1
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Ãµ
2

1

¶1−
(1− )

! −1


⎤⎦


−1

≡ −1

from which we obtain (41).The derivation of (42) is straight forward from (21).

Proof of Proposition 6. Using (36) we can rewrite (24),

(1− )
1
2





(1− )
1
2

= 
2−1
2

which, after using (26) to replace , becomes

 = ((1− ))
2

2−1
(1− )

1
2−1

(− ) ( (1− (1− ))− )
1

2−1

where 0 ()  0 (resp. 0 ()  0) for all  ∈ ( 1) if 2  1 (resp. 2  1). Furthermore,
it is worth noticing that when 2  1,  (1) = 0 and lim→ () = ∞ and when 2  1,

 () = 0 and lim→1  () =∞

Given (36) and 1 =2the rate of change of the normalized capital stock is,

b = b − c1 − b = 



−  −− 

Since  = 1 and sector 1 has the Cobb-Douglas technology while sector 2 has the CES

technology, the agregate output-capital ratio is given by




=
£
(−1)1−()

¤ ∙
(1− )

¡
(1− )−1

¢2−1
2 + ((1− ))

2−1
2

¸ (1−)2
2−1

the steady state characterized under the initial ranking of factor intensities. In fact, under our assumption

2  1, there is a trivial steady state, 
∗ = ∗ = 0, that exhibits the saddle path property, since at that

point
̇


= (2 − 1)2 (1− )  0 while

̇


 0
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which can be expressed using (23), (25), (26), and (44) as




= () (70)

where  and () are defined by (46) and (47) respectively. Notice that when 2  1

( respectively,   2  1), () is an increasing resp. decreasing) function defined over the

interval [ 1], with () = 0 (resp. () =∞) and lim→1 () =∞ ( resp. (1) = 0).

Therefore b = ()− ( ++ ) (71)

Finally log-differentiating (44)

b = −()̇ (72)

where () is defined by

() ≡ −
µ

1

2 − 1
¶

1

1− 
− (2 − 1)
(− )(2 − 1) −

µ
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¶∙

1
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(− )

+
1− (1− )

(1− (1− ))− 

¸
where the terms inside [] is equal to

(1−  + )(1− )(− ) + 2 (1− ) ((1− (1− ))− )

(1− ) (− ) ((1− (1− ))− )

i.e.
(1−  + )(− ) + 2 ((1− (1− ))− )

(− ) ((1− (1− ))− )

which is positive for all  ∈ [ 1].
Combining (72) with (71) yields (45).

Proof of Lemma 4.3.1. This proof follows Jones (1965) and Miyagiwa and Papa-

geourgiou (2007). The dual relationship between sectoral prices and input prices and factor

endowments and sectoral outputs are given by,

1 ( ) ≡ 1

1
 +

1

1
 = 1 (73)

2 ( ) ≡ 2

2
 +

2

2
 = 2 (74)

11 + 22 =  (75)

11 + 22 =  (76)
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where  ( ) is the unit cost function for good  = 1 2 and  are its partial derivatives

with respect to each factor price  =  

Differentiating the previous expressions we reach the following relationships,

1

11
̂ +

1

11
̂ = 1̂ + 1 ̂ = b1 (77)

2

22
̂ +

2

22
̂ = 2̂ + 2 ̂ = b2 (78)


³
̂1 + b1´+ (1− )

³
̂2 + b2´ = ̂ (79)


³
̂1 + b1´+ (1− )

³
̂2 + b2´ = ̂ (80)

where  are the factor income shares,  = , in each industry.

Subtracting (77) and (78), and using the fact that the sectoral production functions are

homogeneous of degree one we reach,

(1 − 2) (̂ − ̂) = (2 − 1) (̂ − ̂) = b1 − b2 (81)

Using the definition of the sector-specific elasticity of substitution,  ≡ 



, since we

can express the factor income shares as  =



 we reach the following rates of change of

partial derivatives of the unit cost functions,

b =
 + 



=
−




 + 



=

−(̂ − )



= −



(̂ − ̂) = −







(̂ − ̂)

where the second equality uses the fact that  ( ) is homogeneous of degree 0. As a

result

b = − (̂ − ̂) (82)b =  (̂ − ̂) (83)

Replacing (82) and (83) in (79) and (80) and subtracting them we reach,

(− ) (̂1 − ̂2) =
³
̂− ̂

´
+Θ (̂ − ̂) (84)

where Θ ≡ 11 + (1− )22 + 11 + (1− )22.

Finally, we use (7) to reach
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̂1 − ̂2 = − (b1 − b2) (85)

Since the aggregate elasticity of substitution is defined as  ≡ −

³
̂− ̂

´
(̂ − ̂)

we combine (81)

and (84) in (85) to reach (61).
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Appendix B
In order to show that  () is a strictly concave and increasing function of  with  (0) =

0, we develop below a general framework for the analysis of the aggregate production using

properties of the sectoral production functions.

Assumption P1: There are two intermediate goods, produced by capital and labor

under concave, twice-continuously differentiable production functions

 = ( )

with the following properties: (i) (0 ) = 0 = ( 0), (ii) 
( ) = ( ) for

all   0,(iii)  is strictly increasing and strictly concave in each argument, i.e.

  0 and   0 for each input 

(iv) the marginal product of an input tends to infinity as the input tends to zero

lim
→0

1( ) =∞ for all   0

lim
→0

2( ) =∞ for all   0

and (v)  is strictly quasi-concave, in particular, the following sufficient condition for a

strictly quasi-concave function is met:

det

⎡⎣ 0 1 2
1 11 12
2 21 22

⎤⎦  0

Assumption P2: The production function of the final good is a concave, twice-continuously

differentiable production function

 = (1 2)

where (i) (0 2) = 0 = (1 0), (ii) (1 2) = (1 2) for all   0, (iii)  is

strictly increasing and strictly concave in each argument, i.e.

 ≡ 


 0 and   0 for  = 1 or 2

(iv) the marginal product of an input  tends to infinity as the input tends to zero

lim
1→0

1(1 2) =∞ for all 2  0

lim
2→0

2(1 2) =∞ for all 1  0
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and (v)  is strictly quasi-concave, in particular, the following sufficient condition for a

strictly quasi-concave function is met:

det

⎡⎣ 0 1 2

1 11 12

2 21 22

⎤⎦  0

From the above assumptions, we can obtain useful information about the aggregate produc-

tion function,  =  () which we will define below.

Let us define the function

(1 1 2 2) ≡ (1(1 1) 
2(2 2))

and use the following notations

1 =


1

, 2 =


1
, 3 =



2

, 4 =


2
, 11 =

2

(1)
2
 ...

Note that

1 = 1
1
1, 2 = 1

1
2, 3 = 2

2
1, 4 = 2

2
2, ...

Lemma A1: The function (1 1 2 2) is

(i) homogeneous of degree one in (1 12 2)

(ii) concave in (1 12 2)

(iii) strictly increasing in each argument,

(iv) strictly concave in each argument,

(v) strictly quasi-concave.

Proof:

Part (i): Straight forward from homogeneity of degree one of 1,2 and 

Part (ii): For simplicity of notation in the following proof, define the vectors

u ≡ (1 1) ∈ R2+ , v ≡ (2 2) ∈ R2+ , and x ≡ (uv) ∈ R4+

Take any pair xx0 ∈ R4+, such that x ≡ (uv) 6= x0 ≡ (u0v0), and let x ≡ x+ (1− )x0

where  ∈ (0 1), we must show that  (x) ≥  (x) + (1− )(x0). Now

x =  (uv) + (1− ) (u0v0) ≡ (uv)

where u ≡ u+ (1− )u0and v ≡ v+ (1− )v0. Then

 (x) ≡ (1 (u)  
2(v))
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≥ (1 (u) + (1− )1(u0) 2(v) + (1− )2(v0))

because  is concave and  is increasing in 1 2,

≥ 
¡
1 (u)  2 (v)

¢
+ (1− )

¡
1 (u0)  2 (v0)

¢
because  is concave in 1 2

≡  (uv) + (1− ) (u0v0) ≡  (x) + (1− )(x0)

Parts (iii) and (iv): Straightforward.

Part (v): We consider the following bordered Hessian⎡⎢⎢⎢⎢⎣
0 1 2 3 4
1 11 12 13 14
2 21 22 23 24
3 31 32 33 34
4 41 42 43 44

⎤⎥⎥⎥⎥⎦
Note that a set of sufficient conditions for  to be strictly quasi-concave is that the sign of

(−1) det  0 for  = 1 2 3 4, where  is of order (+1)× (+1) (see e.g. Takayama
(1985)). Making use of the fact that   0 and   0, it is routine to evaluate the sign

of the above determinants¥
Next, we define the following aggregate production function  : R2+ → R+ where

 () ≡ sup© ∈ R2+| ≤ (1 1 2 2) 1 +2 ≤  and 1 + 2 ≤ 
ª

Lemma A2: The function  () is

(i) homogeneous of degree one in ()

(ii) concave in () hence  ≤ 0 and  ≤ 0
(iii) strictly increasing in each argument

(iv) strictly concave in each argument

Proof:

Part (i): Given ()  (0 0), let x∗ ≡ (∗
1  

∗
1

∗
2  

∗
2) be the solution of the problem

max(1 12 2) s.t. 1 +2 ≤  and 1 + 2 ≤ 

and let

 ∗ = (∗
1  

∗
1

∗
2  

∗
2) ≡ (x∗)

Let   0 be any positive real number. Consider the problem

max(1 12 2) s.t. 1 +2 ≤  and 1 + 2 ≤ 
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Since () is homogeneous of degree 1 (by Lemma A1), it follows that (∗
1  

∗
1 

∗
2  

∗
2)

solves this problem, and  ∗∗ ≡ (∗
1  

∗
1 

∗
2  

∗
2) = (∗

1  
∗
1 

∗
2  

∗
2) =  ∗. This

proves that  () is homogeneous of degree one in ().

Part (ii): Consider any pair of endowment vectors ( 0 0) and ( 00 00). Let x0 ∈ R4+ be
the solution when () = ( 0 0) and x00 ∈ R4+ be the solution when () = ( 00 00).

For any  ∈ (0 1), let
( ) ≡ ( 0 0) + (1− )( 0 0)

Clearly, when () = ( ), a feasible output is (x) where x ≡ x0 + (1 − )x00

and since  is concave,

(x) ≥ (x0)+(1− )(x0)

Thus, by definition,

 ( ) ≥ (x) ≥ (x)+(1− )(x0) =  ( 0 0) + (1− ) ( 00 00)

It follows that  () is concave in (). This implies that  ≤ 0 and  ≤ 0
Part (iii): Since  is an increasing function and any increase in  allows both 1 and

2 to be increased, thus aggregate output  is increasing in the aggregate capital stock. So

  0 and similarly,   0.

Part (iv): Set up the Lagrangian

L = (1 12 2) + 1( −1 −2) + 2(− 1 − 2) (86)

By the envelope theorem,



=

L


= 1

Using the first order conditions for problem (86) it is a standard, although tedious, exercise

on comparative statics to show that
2

2
=

1


 0 ¥

Notice that it is trivial to extend the previous analysis to allow for Harrod neutral tech-

nological progress.

Now, given (36) and Lemma A2(i) we define aggregate output per unit of effective labor

as




= 

µ



 1

¶
≡ () (87)

Lemma 1: () is strictly increasing.

Proof: From (44) we know that there is a monotone decreasing (increasing) relationship

between  and  if 2  1 (2  1). So we need to show that ()() is decreasing

(increasing) in  if 2  1 (2  1)
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Combining (47) and (44) we have that,

(()) =
(1− )


2−1(2−)(2−1)

(− ) ( (1− (1− ))− )
1−(1−)
2−1

≡ ()  0 for  ∈ ( 1) (88)

where  ≡ ((1− ))
2

2−1 .

Then we can express (87) as

 () =  ( ())

and therefore

 0() = 0()



= ()

 ln






=

()¡




¢  ln


= 

()



 ln


 ln



= ()

 ln


 ln



(89)

Log-differentiating (88) we reach

 ln


= − 

(2 − 1)(1− )
− [1− (1− )]

2

(2 − 1) ( (1− (1− ))− )
+

2 − 

(2 − 1) −
1

− 
(90)

that after re-arranging becomes

 ln


=

1

(1− 2)()
(() + 2(1− ) ( (1− (1− ))− )) (91)

where

() ≡ 
£
(1−  + )2 − 2 + 2

¤
and

() ≡ (1− ) (− ) ( (1− (1− ))− )  0 for all  ∈ ( 1)
Notice that () is a strictly convex function that attains a minimum at  =



1−  + 
= .

Furthermore evaluated at  we find ()  0, so it follows that () ≥ ()  0 for all

 ∈ [ 1]. Therefore, we conclude that 
µ
 ln



¶
= (1− 2)¥

Lemma 2: () is strictly concave.

Proof: Straight forward from Lemma A2.

Lemma 3: The function  () has the following properties:  (0) = 0 and  (∞) =∞.
Proof: Consider the case 2  1. As  → 0, () → 1, and since lim→1 () = 0, we

have  (0) = 0. As  →∞, () →  and since lim→ () =∞, we have  (∞) = ∞. A
similar reasoning can be applied when 2  1¥
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Appendix C (not intended for publication)
In this appendix we provide additional details on some of the derivations.

Section 2.3.3.

Proposition 3

Combining (23) and (25) we obtain

 = (1− )12
µ



1− 

¶"
(1− )(1− )

2−1
2

µ


2

¶ 1−2
2

+ (1− )
2−1
2

#
(92)

Re-arranging (24)

(2)
1−2
2 =

(1− )
1
2





(1− )12
(93)

Re-arranging (92)

−(1−)12
µ



1− 

¶
(1−)

2−1
2 = (1−)12

µ


1− 

¶
(1−)(1−)

2−1
2 (2)

1−2
2 (94)

Substitute (93) into (94)



(1− )12
−
µ



1− 

¶
(1− )

2−1
2 =

µ


1− 

¶
(1−)(1− )

2−1
2
(1− )

1
2



µ


(1− )12

¶
or

1−
µ



1− 

¶
(1− )

2−1
2

µ
(1− )12



¶
=

µ


1− 

¶
(1− )

µ
1− 



¶
or

1−
µ



1− 

¶


µ
1− 



¶
=

µ


1− 

¶
(1− )

µ
1− 



¶
or

1−
µ



1− 

¶


µ
1


− 1
¶
=

µ


1− 

¶
(1− )

µ
1


− 1
¶

Thus

 =
 (1− )

− 
with




= −

µ


1− 

¶µ




¶2
 0 (95)

Equation (95) shows that  and  always move in opposite direction. Furthermore since

 ≤ 1 and  ≤ 1, (95) determines the range of permissible values for  is [ 1] and for  is
[ 1] where

0   ≡ (1− )

1− 
 1

and

0   ≡ 

(1− ) + 
 1
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Combining (93) and (95) and taking logs we reach,

1− 2

2
ln

µ


2

¶
=
1

2
ln(1− ())− ln() + ln− 1

2
ln(1− )

This relationship is monotone decreasing (iff 2  1): an increase in  leads to a fall in  :µ
1− 2

2

¶µ



− 2

2

¶
=  ()  (96)

where

() ≡
∙

1

2 (1− ())
+

1

()

¸µ
()



¶2µ


1− 

¶
+

∙
1


+

1

2(1− )

¸
 0

where () is given by (95).

Remarks on Proposition 3.

Notice that 1 =  and therefore b1 = b − b + b = ∙







− 






+ 1

¸b We now
show that the expression inside the squared brackets is positive.








− 






+ 1 =

(1− 2)

2()
+

µ


1− 

¶µ
()



¶
(2 − 1)
2()

+
2()

2()

=
1

2()
+

µ


1− 

¶µ
()



¶
1

2()
+

()− 1− ¡ 
1−
¢ ³

()



´
()

Using (34)

() =

∙


2 (1− ())

¸µ
()



¶2µ


1− 

¶
+

∙


2(1− )

¸
+

µ
()



¶µ


1− 

¶
+ 1

So

()− 1−
µ



1− 

¶µ
()



¶
= 

∙
1

2 (1− ())

¸µ
()



¶2µ


1− 

¶
+

∙


2(1− )

¸
 0

The analysis concerning the capital-labor ratio in the other sector, 2 =

µ
1− 

1− 

¶
 is

similar.
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Tables and Figures 
 
Table 1. Key variables across countries. 
 Y L  Kna Lna  Ka La  La L  Ka K  
Rich 5 18,118 79,338 92,322 5.00% 5.70% 
Poor 5 807 5,577 172 78.00% 11.00% 
Ratio 22 14 537 1/16 1/2 
Mean 8,084 36,194 26,210 29.19% 7.27% 
Std. Dev. 6,094 29,474 33,842 24.36% 3.53% 
Min 529 1,297 23 2.00% 1.76% 
Max 20,717 99,492 125,618 84.00% 16.37% 
Coeff. Var 0.75 0.81 1.29 0.83 0.49 
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Figure 7. Model simulations (σ1 = 0.8;σ 2 = 1.2 ) 
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